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ABSTRACT 

 The work embodied in this thesis bridges the gap between modern and next-

generation Li-ion batteries (LIBs). First, a detailed study of the complex interfacial 

interactions (e.g. electrode/electrolyte, particle/particle, particle/solid-electrolyte 

interphase) in existing LIBs (graphite anode, Li(Ni0.5Mn0.3Co0.2)O2 cathode) are 

investigated and then used to develop strategies for safer, more energy-dense, and more 

durable electrode materials (i.e. tailored hybrid materials). The first portion of this thesis 

focuses heavily on decoupling the complex thermodynamics, reaction kinetics, and mass 

transport properties in commercially available LIBs. This thesis includes a detailed 

investigation into the operating parameter space for LIBs, including temperature (-30oC to 

+52oC), state-of-charge (SOC, 0% to 100%), applied currents, and lifetime (>1000 cycles). 

Fundamental parameters are extracted from experimental data and implemented into two 

different computational models (tau lumped model and pseudo-2D model) to provide 

system-level predictions and isolate the inherent loss mechanisms that hinder performance, 

such as electrical conduction, lithium diffusion, electrolyte diffusion, and charge transfer 

resistance.  

The next section of this thesis applies a large suite of characterization tools – 

including microscopy, multiple-location liquid N2 Raman spectroscopy, gas 

chromatography/mass spectroscopy, and X-ray photoelectron spectroscopy – to probe 

complex reactions that lead to cell failure.  Modern LIBs, particularly commercial cells 



www.manaraa.com

vi 

 

with large electrodes, can experience severe gassing, Li-plating, and anisotropic 

lithiation/delithiation.  These negative behaviors can trigger a cascade of complex reactions 

that lead to thermal runaway.  Such reactions include high surface area plated Li with the 

organic electrolyte (ethylene carbonate, dimethyl carbonate, diethyl carbonate, lithium 

hexafluorophosphate) under charge/discharge vs. open circuit storage.  Electrolyte 

decomposition reactions can also occur that result in the release of large volumes of CO2, 

H2, O2, CO, CH4, C2H4, and C2H6 gases, which causes drastic morphological and 

microstructural changes to the electrode. Also, the severe polarization of the electrode at 

low temperatures can cause significant Li0 residence at high-stress regions (i.e. high 

curvature, edges, electrode ripples).  

A paradigm shift is needed to move past the limiting factors that plague current LIB 

systems (e.g. low-moderate energy densities and inherent safety risks realized in Chapter 

2 - Chapter 4).  A search for new materials is required to meet the demands of the future. 

Conversion-based materials – such as transition metal sulfides, fluorides, and oxides – that 

leverage bond-breaking reactions are promising candidates to provide higher gravimetric 

and volumetric energy densities in comparison to the incumbent intercalation-based 

materials. Conversion materials also have a higher redox potential (~1V vs Li/Li+), which 

additionally provides protection from Li-plating, resulting in safer batteries. However, in 

the literature, conversion-based materials have suffered from poor reaction reversibility 

that can lead to short battery life. Chapter 5 applies electroanalytical techniques and 

electron transfer theory to probe the reaction mechanisms that form the solid electrolyte 

interphase (SEI) and the conversion reaction for one conversion-based anode material, 

NiO.  First, a combination of physical and electro-analytical techniques were used to 
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investigate the SEI formation, which is the predominant capacity-degrading process in 

LIBs.  One of the most important methods was the current-pulse relaxation method via 

galvanostatic intermittent titration technique (GITT), which allows for both diffusion and 

kinetics to be quantified along the reaction pathway (0%-100% SOC). Also, the Butler-

Volmer (BV) and Marcus-Hush-Chidsey (MHC) models are used to investigate the 

effective transfer coefficients and reaction reorganizational energies.  This information is 

used to provide new mechanistic insight into the rate-determining step and the SEI 

formation reaction pathway at different SOC and to compare the SEI formation chemistry 

with modern materials.   

In addition to SEI formation, conversion materials undergo other degradative 

processes as well, including metal (charge) trapping, transformation of the transition metal 

in the oxide (NiO) to higher oxidation states, and agglomeration-induced loss of 

electrochemically active sites.  Taking that into consideration, Chapter 5 introduces a new 

concept that isolates the NiO from the electrolyte, effectively eliminating all of the above-

mentioned degradation mechanisms.  This concept uses nanoconfinement of the 

conversion-based anode inside of small diameter carbon nanotubes. The CNT host was 

found to provide a termination-length for the SEI by specifically isolating the active 

material from the bulk electrolyte. In addition, the CNT host provides long-range 

interparticle electronic conductivity and immobilizes the reactants/products to one semi-

closed packet.  The result is a very high-capacity material (ca. 700 mAh g-1) with very high 

coulombic efficiency (> 99.9%) that also has the ability for long-term operation (> 2000 

deep charge/discharge cycles between 0-100% SOC at 1C).  
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Chapters 7 and 8 of this thesis are meant to provide some perspective on the state 

of the technology and where it is going.  More specifically, Chapter 7 is a summary of all 

the fundamental findings in this work.  Chapter 8 proposes future work that can be done to 

achieve long-life, high energy density lithium-ion batteries in the near future. 
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Figure 5.2. | Represents (a) charge/discharge curves for Vulcan XC-72R carbon 

black, (b) Tafel-like plots with Butler-Volmer (solid line) and 

Marcus-Hush-Chidsey (dashed lines) models on-top of 

experimental data (dots), and (c) illustration of the interfacial 

structure of carbon during initial charge stages and reaction 

mechanism as proposed by (Wang et al.186). The reaction 

mechanism designations are C = chemical step, E = electrochemical 

step, D = dimerization reaction, and a double line highlight the rate-

determining step.  Reproduced with permission from The Royal 

Society of Chemistry.167................................................................................ 119 

Figure 5.3. | Depicts galvanostatic intermittent titration technique for the 

parameter extraction of (a) apparent diffusion coefficient and (b) the 

apparent exchange current. Both plots contain the open circuit 

potential of NiO marked in (blue). Each section contains a dot that 

indicates locations where linear sweep voltammetry is done. Four 

sections are broken down (I, II, III, IV) to delineate dominant 

mechanisms. Also, high-resolution transmission electron 

microscopy is depicted as (c) TEM of post-cycled NiO. The atomic 

resolution HRTEM is depicted in (d) for the Ni domain 

(~2.1Å[111], ~1.8Å[200]) and (e) for the NiO domain (2.4Å[111], 

2.0Å[200]). The Fast Fourier Transform (FFT) analysis of the 

HRTEM (f) for Ni and (g) for NiO. (h) Depicts the schematic for 

NiO particle transformation and showing the conversion reaction 

front propagation for the particle-level HRTEM image in Figure 

5-3c (i.e. lithiation propagates from the bulk electrode until the 

reaction front stops due to high local polarization (i.e. the electrical 

losses generate a termination distance) and resulting in trapped 

charge). Reproduced with permission from The Royal Society of 

Chemistry.167 ................................................................................................. 125 

Figure 5.4. | Represents Tafel-like plots for Butler-Volmer (solid line) and 

Marcus-Hush-Chidsey (dashed lines) models on-top of 

experimental data (dots). Reproduced with permission from The 

Royal Society of Chemistry.167 ..................................................................... 127 
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Figure 5.5. | High-resolution XPS spectra of (a) pre-cycled and (b) post-cycled 

NiO electrodes in the Ni 2p, C 1s, and O 1s spectra. Reproduced 

with permission from The Royal Society of Chemistry.167 .......................... 130 

Figure 5.6. | Transmission electron microscopy was used in (c) which 

represents the post-cycle surface mesostructure and highlights high 

anisotropy in SEI formation, (d) high resolution of the SEI, (e) 

energy-dispersive X-ray spectroscopy, and elemental mapping of 

the SEI. Reproduced with permission from The Royal Society of 

Chemistry.167 ................................................................................................. 134 

Figure 6.1. | Physical and Electrochemical Characterization. (a) SEM, (b) 

TEM/EDS of NiO/C. (c) X-Ray Diffraction (XRD) patterns 

comparing the crystallography (e.g. crystallite domain size, 

structure) of NiO/C (blue line), ID-NiO/CNT (green line), and NC-

NiO@CNT50 (purple line). (d) SEM and (e) TEM/ESC of ID-

NiO/CNT. (f) Comparing the capacity retention of NiO/C (blue 

line), ID-NiO/CNT (green line), and NC-NiO@CNT50 (purple line) 

at 1C charge/discharge rate to observe the reaction and cell-level 

reversibility. Reproduced with permission from The Royal Society 

of Chemistry.37 .............................................................................................. 146 

Figure 6.2. | Evaluation of Physical and Chemical Transformations. (a) TEM 

image of NiO/C after 10 electrochemical cycles. XPS spectra of 

NiO/C including (b) Ni2p, (c), O1s, and (d) oxidation state 

percentages for NiO/C. (e) TEM images of ID-NiO/CNT after 10 

electrochemical cycles.  XPS spectra of ID-NiO/CNT including (f) 

Ni2p, (g) O1s, and (h) oxidation state percentages for ID-NiO/CNT. 

Reproduced with permission from The Royal Society of Chemistry. 
37 .................................................................................................................... 152 

Figure 6.3. | Material Nanoconfinement. (a) Illustration of metal oxides spatial 

rearrangement during charge/discharge in the case of 

nanoconfinement, (b) SEM images of nano-confined NiO in NC-

NiO@CNT50, (c) TEM images and EDS mapping of NC-

NiO@CNT50, (c-1) interlayer spacing of CNT, (c-2) interface 

between MO-CNT, (c-3) lattice fringes of NiO, (d) TEM image of 

NiO@CNT50 after 10 electrochemical cycles. XPS spectra of NC-

NiO@CNT50 including (e) Ni2P, (f) O1s, as well as (g) the 

percentage of active materials remaining in the 2+ oxidation state 

after cycling.  Reproduced with permission from The Royal Society 

of Chemistry.37 .............................................................................................. 156 
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Figure 6.4. | Electrochemical performance. (a) The charge-discharge curves 

and (b) differential capacity analysis (dQdV-1) of NC-NiO@CNT50. 

(c) Rate capability evaluation for charge reversibility and rate-

specific side reactions at different current densities for NC-

NiO@CNT50. (d) EIS spectra after 10, 50, and 100 charge/discharge 

cycles for ID-NiO/CNT and NC-NiO@CNT50, showing the 

evolution of chemical and physical processes (e.g. diffusion, charge 

transfer, electrolyte conductivity, SEI resistance) during cycling. (e) 

Capacity retention over 2000 cycles for NC-NiO@CNT10 at 1C (718 

mAh g-1). (f)  Capacity retention, charge-discharge curves, and 

differential capacity analysis for high loading full cells made from 

NC-NiO@CNT10 anodes and Li(Ni0.5Mn0.3Co0.2)O2 cathodes 

(anode loading: 5.16 mg cm-2; cathode loading: 18.23 mg cm-2) full 

cell. XPS spectra for NC-NiO@CNT10 before and after cycling 

including (g) Ni2P, (h) O1s, and (i) the percentage of NiO remaining 

in the 2+ oxidation post-cycling. Reproduced with permission from 

The Royal Society of Chemistry.37 ............................................................... 157 

Figure 6.5. | Phase Separation and Degradation Pathway. Identifying the 

degradation pathways in conversion MOs (e.g. M/MO 

agglomeration, metal trapping, electrical detachment, SEI 

engulfment of MO, particle delamination) caused by fluctuations in 

the local e-, Li+, oxygen, and metal balance during phase separation 

for (a) physically mixed NiO/C, (b) anchored ID-NiO/CNT, and (c) 

nano-confined NC-NiO@CNT. Reproduced with permission from 

The Royal Society of Chemistry.37 ............................................................... 161 
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Sulfur technologies where (a) is the cycle performance plot, and (b) 
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CHAPTER 1: INTRODUCTION TO LI-ION BATTERIES 

The global energy consumption and the production of climate changing agents (e.g. 

waste heat, H2O vapor, CO2) have skyrocketed in the 21st century.1,2 Of the various forms 

of energy conversion, alternative energy (e.g. solar, wind, hydro) is projected to help solve 

the energy demands of the future and control emissions from fossil fuels. However, the 

intermittent nature of most alternative energy makes their widespread deployment 

beholden to energy storage technologies.  Among all options, electrochemical energy 

storage (EES) devices are widely recognized as being integral to meeting these energy 

storage and distribution needs at many scales.  This has led to a surge in interest for the 

development and optimization of batteries and supercapacitors.  Li-ion batteries (LIBs) 

have been widely touted as the most promising EES devices because of their high energy 

(~250 Wh kg-1), power densities (~500 W L-1), efficiency (~90%), fast charge capability, 

and remarkable durability,3–5 which is the reason why LIBs are now implemented in 

electrified transportation (e.g. electric cars, electric trucks), portable electronics (e.g. 

computer, cellphones, accessories),  medical devices (e.g. cardiac pacemaker, artificial 

hearts, prostheses), and grid storage.6–9 

Of these technologies, electric vehicles (EVs) are pivotal in fostering a cleaner and 

sustainable future. In comparison to the standard gasoline-powered internal combustion 

engine (ICE) whose energy efficiency is around 20%-35%, EVs can reach efficiencies 

greater than 90%. As a bonus, EVs require 50% fewer moving parts which translates to 
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easier maintenance and less costly repairs. The main drawback, however, is the relatively 

low energy density of LIBs in comparison to gasoline (12 kWh kg-1), which either increases 

the weight and volume of the battery pack (10x heavier and 6-7x greater in volume) or 

limits the driving range (<600km). For EVs to push past commercial ICE vehicles, the 

energy density must be significantly improved, the pack must have a comparable lifetime, 

and the cost ($ kWh-1) must be competitive. The United States Advanced Battery 

Consortium has established goals for advanced EV batteries for the year 2023 (Table 1.1). 

The USABC develops benchmarking strategies so automobile/battery manufacturers, 

government agencies (e.g. U.S. Department of Energy and its National Laboratories), 

universities, and other affiliated institutions can have comparable data and a unified 

direction for the future of EES devices. To meet these goals, advances are needed at both 

the material and system levels (including the battery management system, BMS).  To make 

such advances, additional fundamental understanding of the limiting factors of component-

level behavior and design is essential.   

 

Table 1.1. | United States Advanced Battery Consortium (USAB) goals for advanced high-

performance batteries for electric vehicle (EV) applications in 202310 

End-of-Life (EOF) 

Characteristics 

System-Level Cell-Level 

Specific Energy at C/3  235 Wh kg-1 350 Wh kg-1 

Energy Density at C/3 500 Wh L-1 750 Wh L-1 

Calendar Life  15 Years 15 Years 

Life Cycles  1000 1000 

Operating Temperature  -40 to +66oC -40 to +66oC 

Cost at 100,000 Units  $125 kWh-1 $100 kWh-1 

Maximum Self-Discharge  <1% month-1 <1% month-1 

Normal Recharge Time  <7 Hours, SAE J1772 <7 Hours SAE J1772 

Fast Charge 80% SOC in 15 mins 80% SOC in 15 mins 
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1.1 ELECTROCHEMISTRY OF COMMERCIAL LI-ION BATTERIES 

Li-ion batteries are secondary batteries (rechargeable) that traditionally operate 

based on intercalation-based materials (i.e. reversible insertion or extraction of Li+ charge 

carriers). Figure 1.1 illustrates the electrochemical operating principles of conventional 

Li-ion batteries. During the discharge, the oxidation of the negative electrode (e.g. graphite, 

Li4Ti5O12) releases electrons (e-), Equation 1.1, which travel through the external circuit 

to reduce the positive electrode (e.g. LiCoO2, Li2MnO2). Simultaneously, the migration of 

Li+ from the anode to the cathode maintains the charge electroneutrality of the system.  A 

generic form for the anode reaction is presented in Equation 1.1. 

𝐿𝑖𝐶6 ⇌ 𝐿𝑖1−𝑥𝐶6 + 𝑥𝑒− + 𝑥𝐿𝑖+ Equation 1.1 

The Li+ migration is facilitated by dissolved charge carriers in the electrolyte.  Here, 

Li salts, such as LiPF6 LiClO4, or LiBF4, are dissolved in a mixture of ethylene carbonate 

(EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), or ethyl methyl carbonate 

(EMC).  Many cells also introduce small quantities of additives such as vinylene carbonate 

(VC) or fluoroethylene carbonate (FEC).  When the Li+ ions reach the positive electrode, 

standard LiMO2 (where M can be Ni, Co, Mn, or mixed) materials undergo a reduction, 

Equation 1.2. 

𝐿𝑖1−𝑥𝑀𝑂2 + 𝑥𝑒− + 𝑥𝐿𝑖+ ⇌  𝐿𝑖𝑀𝑂2 {𝑀 = 𝑁𝑖, 𝐶𝑜, 𝑀𝑛, 𝑜𝑟 𝑚𝑖𝑥𝑒𝑑)    Equation 1.2 

The overall electrochemical reaction for a modern Li-ion battery is: 

𝐿𝑖1−𝑥𝑀𝑂2 +  𝐿𝑖𝐶6 ⇌ 𝐿𝑖𝑀𝑂2 + 𝐿𝑖1−𝑥𝐶6 Equation 1.3 

Also, the reaction processes are highly reversible, which makes the charge reaction just 

the opposite direction of Equation 1.1 to Equation 1.3. 
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Figure 1.1. | Diagram elucidating the operating principles of a Li-ion battery with the 

conventional anode (e.g. graphite, Li4Ti5O12), cathode materials (e.g. LiCoO2, Li2MnO3), 

and electrolyte (e.g. LiPF6 in organic carbonates). Reproduced with permission from IOP 

Publishing 11 

 

The operating voltage for the overall cell reaction in an operating battery can be 

determined by both the thermodynamic limit (Nernstian potential) for the electrochemical 

reactions and the net resistive losses (e.g. ohmic, kinetic, mass transfer). Therefore, the cell 

operating voltage can be represented as:  

𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑜 − [(𝐶𝑇)
𝑎

+ (𝐶𝑇)
𝑐
] − [(𝑀𝑇)

𝑎
+ (𝑀𝑇)

𝑐
] − 𝑖𝑅𝑖 = 𝑖𝑅 Equation 1.4 

where Ecell is the cell-level voltage, Eeq is the cell thermodynamic voltage (𝐸𝑒𝑞 = 𝐸𝑐 −

𝐸𝑎 =
−∆𝐺

𝑛𝐹
), 𝐺 is the Gibbs free energy of the overall cell reaction, F is Faraday’s constant 

(96485.33 C mol-1), ηCTa is the kinetic overpotential for the anode, ηCTc is the kinetic 

overpotential for the cathode, ηMTa is the mass transfer overpotential for the anode, ηMTc is 

the mas transfer overpotential for the cathode, and iRi is the net ohmic loss due to particle-

particle contact, ionic conductivity (typically dominant) and electronic conductivity. 

Higher operating voltages are desired for the discharge process (i.e. higher Gibbs free 

energy in the spontaneous direction), whereas lower voltages are desired for the charging 
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(i.e. less energy is required to put energy into the system). One method to increase the 

energy is by achieving higher operating voltages for the discharge process (Equation 1.4), 

which can be done by increasing the cathode potential and/or decreasing the anode 

potential. The other method is to minimize the resistive losses (i.e. ohmic, kinetic, and/or 

mass transport), such that the operating voltage approaches the thermodynamic value.  

In addition to the cell operating voltages, the overall energy density of the cell is 

dictated by the amount of charge that can be stored per unit mass of active material, which 

is called the capacity.  The capacity for any material – either the anode or the cathode – can 

be calculated from Equation 1.5.    

𝑄𝑥 =
𝑛  𝐹

3.6𝑀𝑊
  ;  𝑄𝐶6

=
1 (96485.33 𝐶 𝑚𝑜𝑙−1)

3.6 (72.0 𝑔  𝑚𝑜𝑙−1)
= 372.2 𝑚𝐴ℎ 𝑔−1  Equation 1.5 

where F is Faraday’s constant (96485.33 C mol-1), n is the number of electrons transferred 

per mol of reactant, and MW is the molar mass of the active material.  Equation 1.5 gives 

a representative theoretical calculation for graphite, which can hold one lithium atom per 

every six carbon atoms (LiC6), though the practically achievable capacity (because of 

resistive losses) is ~330 mAh g-1.  Doing the same calculation for a typical cathode 

material, LixCoO2 (LCO), yields a value of 273.8 mAh g-1, but LCO is unstable when x < 

0.5, resulting in practical capacities of ~140 mAh g-1. The theoretical gravimentric energy 

density is defined by the electrochemical voltage of the cell and the specific capacities of 

the anode (Qa) and cathode (Qc) and can be determined by the following equation, 

𝑇ℎ𝑒𝑜𝑟. 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑄𝑐×𝑄𝑎

𝑄𝑐+𝑄𝑎
× 𝐸𝑎𝑣𝑔 ;  LiC6/𝐿𝑖𝐶𝑜𝑂2 = 354 𝑊ℎ 𝑘𝑔−1 Equation 1.6 

where Qc = 140 mAh g-1, Qa = 330 mAh g-1, and the average operating voltage is 3.6V for 

a theoretical LiC6/LiCoO2 system. However, this calculation does not provide the true cell-

level energy density, because it does not take the mass of the anode (ma), cathode (mc), 
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electrolyte (me), separator (ms), and packaging material (mp) into consideration. Also, the 

negative-to-positive capacity ratio (N/P) is hardly ever unity and typically between 1.03 to 

1.2, which increases the amount of inactive mass in the system.12 Thus, the practical cell-

level gravimetric energy density is typically much less than the theoretical value and can 

be calculated by the following equation,13 

𝐶𝑒𝑙𝑙 − 𝐿𝑒𝑣𝑒𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑄 × 𝐸𝑎𝑣𝑔

𝑚a + 𝑚c + 𝑚e + 𝑚s + 𝑚p 
 Equation 1.7 

where the anode and cathode mass quantities include active material, inactive components, 

and current collector. In Table 1.2 is a summary of the achieved energy density for 

commercial and proposed next-generation Li-based batteries. The gravimetric energy 

density of the electrochemical system is one of the most important features because low 

battery weight is essential in aerospace, space, wearables, and military applications,14 

whereas the volumetric energy density is critical for grid storage and EV applications. 

 

Table 1.2. | Summary of the energy density of commercial and commonly proposed next-

generation Li-based batteries. The calculations are based on an average discharge voltage 

reported in Wu et al,15
 but in short, the calculation considers 4.5 m thick Al and Cu current 

collectors, 9 m separator, and single-sided electrodes with desired volume percentages 

based on chemistry (70 vol% for intercalation-materials, 60 vol% for next-generation 

electrodes like Si, Li, sulfur – remaining volume contains inactive components like binder, 

conductive agents, voids). Note, the calculation also assumes a packaging of 10 wt%.16 

System Anode Cathode Avg. 

Discharge 

Voltage (V) 

Volumetri

c Energy 

(Wh/L) 

Gravimetric 

Energy 

(Wh/kg) 

Commercial LixC6
 a

 LiCoO2 (layered) a 3.6 737 245 

Commercial LixC6
a LiMn2O4 (spinel) a 3.8 724 264 

Commercial  LixC6
 a LiFePO4 (olivine) a 3.2 606 241 

Next-Gen Si b LiNi0.84Co0.12Al0.04O4
 a 3.4 1277 459 

Next-Gen Li d LiNi0.84Co0.12Al0.04O4
 a 3.7 1363 541 

Next-Gen Li d Li2S/Sulfur c 2.15 1066 904 
a intercalation mechanism 
b alloying mechanism  
c conversion mechanism  
d plating/stripping mechanism 
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1.2 INTERCALATION REACTION MECHANISMS 

Intercalation reactions are by far the dominant reaction mechanism in both the 

anode and cathode of commercial LIBs. In the case of graphitic anodes (theoretical 

capacity = 372 mAh g-1), the electrochemical insertion of Li into the inner structure of 

graphite occurs through multiple stages (LiCx) based on thermodynamic stability. Figure 

1.2 illustrates the atomic structures of various stages (designated stage-n or # of layers) in 

Li-intercalated graphite. In general, Li intercalates into the interstitial sites between 

graphite layers in a dilute formation and stabilized by the introduction of an electron to the 

sp2 ring of graphite – resulting in a highly reversible reaction.17 Driving up the Li-

concentration in the electrolyte results in the formation of the stage-4 structure for the 

intercalated compound, and further increasing the Li-concentration leads to the transition 

towards the dilute stage-3 structure. Electrochemical intercalation can force the dilute 

stage-3 structure to stage-2 (LiC18) and further reduction can result in a two-phase 

transition (filled stage-2 LiC12 and saturated concentration stage-1 LiC6 structure). 

Therefore, based on the fundamental reaction, only one Li atom can be stored for every 

six-carbon repeat unit, which gives rise to the a relatively theoretical limit of 372 mAh g-1.  

Other commercialized anode materials, such as lithium titanate (LTO, Li4Ti5O12), also 

follow intercalation mechanisms, but their higher density and larger unit size than graphite 

drive their capacity down even further.  For example, the theoretical capacity of LTO is 

only 175 mAh g-1.  This means that despite LTO being a very stable anode, it cannot be 

used in applications where high energy density is required.   
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Figure 1.2. | Atomic structure of Lithium intercalation in graphitic carbon (LiCx) and 

showing, (a) the top view, (b) side view of stage-2 LiC18, (c) top view, (d) side view of 

stage-3 LiC18, (e) LiC12, and (f) LiC6. Reproduced with permission from  IOP Publishing.17 

 

At the cathode, intercalation compounds are also used.  The most common 

materials are metal oxides with the general formula LixMO2 where M = Mn, Ni, Co, Al.  

Typically, M is a mixture of most or all of these elements.  For example, a very common 

material is LixNi0.5Mn0.3Co0.2O2 (also called NMC532).  These LixMO2 typically have a 

layered crystal structure. The close-packed O-framework shared with metal forms MO2-

sheets that enables the transfer of Li into and out of the crystal structure. Variations in the 

interstitial sites are typically designated with a letter that indicates the coordination (O, P, 

or T) and a number that reveals the number of layers. The majority of Li-intercalation 
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cathodes are O1 and O3, which means Li is octahedrally coordinated to an anion every 

layered repeat unit or structured with an AB CA BC framework.18 Also, disordered rocksalt 

and spinel crystallographic structures are related to the O3 structure (LiMnO2 and 

Li0.5CoO2) but differ in the Li and M cation arrangement and can be seen in Figure 1.3.  

However, in these materials, the large repeat groups and the fact that these materials 

collapse when too much Li is removed, severely limits the achievable capacity to only 140-

220 mAh g-1.   

 

Figure 1.3. | Comparison of layered, disordered rocksalt, and spinel cation ordering. 

Reproduced with permission from John Wiley and Sons18 
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1.3 AGING MECHANISMS AND TEMPERATURE EFFECTS IN LIBS 

One of the most important concepts in LIBs is the formation of the solid electrolyte 

interphase (SEI) and its role in battery performance. Electrodes with redox potentials 

(graphite, Si, Li-metal) within the reactive region of the electrolyte (i.e. lowest unoccupied 

molecular orbital or LUMO of the electrolyte is at a higher energy state than the Fermi 

energy of the anode) like Li/Li+ will reduce the electrolyte to semi-stable compounds to 

form the SEI. Likewise, electrolyte oxidation can occur on the cathode-side, if the HOMO 

of the electrolyte is lower in free energy than the electrode Fermi level, leading to electron 

transfer. The common consensus19–22 is a stratified film for the SEI, which is composed of 

a densely-packed inorganic inner layer (i.e. directly at the electrode interface and consists 

of Li2CO3, LiF, Li2O) and a porous organic layer consisting of semi-carbonates and 

polyolefins. The SEI formation process is detrimental to cell performance since it 

consumes active Li and electrolyte-components (i.e. ethylene carbonate), which leads to 

capacity loss, resistance build-up, and poor power density. 

The temperature plays a significant role in the performance of the cell. Elevated 

temperatures can temporarily result in a higher achievable capacity due to the improved 

kinetics and mass transport but can also trigger degradation reactions (represented in 

Figure 1.4). Long term operation at high temperatures causes thickening of the SEI 

(increased interfacial impedance), electrolyte decomposition (reduction in ionic 

conductivity), and undesirable SEI compositional change (loss of elastic organic 

components and generation of brittle inorganics). Electrolyte decomposition reactions can 

also release gasses that alter the electrode morphology and decrease the safety of the cell. 

At the cathode side, metal dissolution can occur at elevated temperatures causing 
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irreversible cathode damage. Subsequently, the metal ions migrate to the anode and can 

integrate itself into the SEI, generating a conductive pathway, or even catalyze the 

destruction of the SEI. At low temperatures, the impedance drastically increases due to 

hindrance in charge transfer and contributions from both the SEI and electrolyte. Also, the 

solid-state diffusivity of Li+ into graphite plummets severely at 0oC.23 As a result, severe 

polarization of the electrode occurs and enables the deposition of high surface area Li-

metal, which is then prone to severe corrosion (i.e. severe safety risk), as well as dendrites.  

 

 

Figure 1.4. | Depicts the instability of the anode interface under high and low temperatures. 

High temperatures can result in (a) deterioration of the SEI, (b) decomposition of the 

electrolyte and release of gas, (c) transition metal dissolution from cathode and reaction at 

anode, (d) severe chemical changes to the SEI. Low temperatures can cause (e) severe 

anode polarization to drive Li-plating, and (f) reduced reaction kinetics and increase in SEI 

resistances. Reproduced with permission from Macmillan Publishers Ltd23 
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The standard cathodes (layered, spinel, and olivine) used in commercial LIBs are 

phase-dependent and operate based on a highly ordered insertion and extraction of Li+ ions. 

High-temperature operation with these cathodes can lead to accelerated metal dissolution, 

crystallographic disorder, and oxygen evolution – resulting in severe performance 

degradation due to loss of active material and destabilization of the structural composition 

(represented in Figure 1.5). The release of oxygen can also lead to electrolyte combustion 

and thermal runaway, which causes catastrophic cell failure.  At low temperatures (<0oC), 

the cathode performance is hindered by slow charge transfer and poor solid-state diffusion 

of Li+ in the cathode - which leads to severe polarization of the electrode and anisotropic 

lithiation processes at low temperature both on a particle-level and on an electrode-level 

(later discussed in Chapter 4). 

 

Figure 1.5. | Depicts the instability in the structure of cathode materials at different 

temperatures (red = high T and blue = low T). The cathodes include (a) LiCoO2, (b) 

LiNi1/3Mn1/3Co1/3O2, (c) spinel LiMn2O4, and olivine LiFePO4. Reproduced with 

permission from Macmillan Publishers Ltd23 
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1.4 CAPACITY LIMITATIONS WITH INTERCALATING MATERIALS IN LIBS   

The selection of anodes and cathodes has not changed significantly over the years 

(e.g. anode = graphite, Li4Ti5O12 or LTO, cathode = LixMO2). This has some negative 

consequences.  Consider the anode.  Yes, the most common anode, graphite, has high 

natural abundance, is easy to process and manufacture, and has a high cycle life.  As 

mentioned earlier, LTO has ultra-high stability and cycle life.  However, both anodes use 

intercalation reactions to store charge, severely limiting their theoretical capacities 

(graphite = 372 mAh g-1, LTO = 175 mAh g-1).  Existing cathodes are even worse.  Though 

commercial cathodes are reversible over a large number of cycles and have low self-

discharge properties, their achievable capacities are only 140 mAh g-1 (LiCoO2) to 220 

mAh g-1 (LiNi0.8Co0.15Al0.05O2). Also, Co-based cathodes are expensive.6 The low 

capacities of these materials and high cost translate to a material that cannot meet the 

demands of the future. To enable the widespread adoption of battery EVs, the driving range 

must exceed 500 km (300 miles) with affordable prices that are <$40,000 (battery energy 

density 350Wh kg-1/750 Wh L-1
 with a battery pack cost of $125 kWh-1).24  This means that 

new materials must be developed at the anode and cathode side to enable emerging 

applications that seek to use LIBs.   

1.5 SELECTION OF NEXT-GENERATION BATTERY MATERIALS  

There is a need to develop reliable and energy-dense materials for LIBs that can 

operate under extreme conditions (i.e. low T, high T, fast charge) and over long operational 

life.  Regarding materials, a portion of this thesis will focus (in Chapters 5-6) on the 

development of new high energy density anode materials.  Though graphite has been the 
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standard Li-ion battery anode for decades, it has three undesirable properties. First, as 

discussed above is the intercalation storage reaction, leading to low capacity (372 mAh/g). 

Second, graphite intrinsically has a low thermodynamic redox potential, which can lead to 

Li-plating, dendrite formation, thermal runaway, and thermal propagation over repetitive 

fast charging cycles (5-10C). Third, is attributed to graphite’s fundamental inability to 

perform well at low temperatures (i.e. stage transformation is hindered by poor-diffusion 

of Li into the bulk and sluggish transfer through the SEI layer) and at high temperatures 

(i.e. anode potential is deep in the instability range of the electrolyte, leading to overgrowth 

of the SEI).   Therefore, the development of any advanced material for the LIB anode must 

address all of these issues.   

Li-metal has been proposed as the “holy grail” of anode materials due to its 

extremely high theoretical capacity (3860 mAh g-1) and low electrochemical potential 

(-3.04V vs SHE). Despite these seductive properties, Li-metal is known to have poor 

coulombic efficiencies (
𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄𝑐ℎ𝑎𝑟𝑔𝑒
) due to severe corrosion of high surface area Li 

electrodeposits – leading to continuous electrolyte decomposition (SEI formation) and 

consumption of the finite reserve of active material and electrolyte. Also, Li-metal is 

known to cause severe gassing, which can drastically increase the internal pressure of the 

cell (i.e. overpressurization).  Constant Li redeposition also causes dendrites that can lead 

to internal short circuits and possibly thermal runaway.25–29  

High-capacity alternatives to metallic Li include alloying materials (Si, Ge, Sn, Sb).  

Their capacities typically range from 1600-3800 mAh g-1, which is very good.  However, 

for the host to store that much charge, the material must expand, with typical values being 

more than 250% from its original volume. As a result, anode electrodes deploying these 
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materials tend to undergo severe structural change that leads to electrode pulverization (i.e. 

cracking) and delamination (i.e. electronically detached from the current collector).  This 

is not good for LIB operation.  Fortunately, other alternatives exist, such as metal fluorides, 

nitrides, phosphides, hydrides, and oxides.  As shown in Figure 1.6, these materials tend 

to have a capacity between 600– 1000 mAh/g.  These alternatives all tend to store charge 

through conversion-based mechanisms such as the one depicted in Figure 1.7.  These 

conversion-based materials leverage the breakage of bonds to store significantly more 

electrons per unit mass.  The general reaction for a conversion-based electrode is shown in 

Equation 1.8, 

Mα
μ+

Xβ
π− +  βπ(Li+ + e−) ⇌  αM + βLiπX Equation 1.8 

Of the conversion anodes, metal oxides (MOs) offer distinct advantages over 

alloying materials such as: i) a redox potential around 1V vs Li/Li+, which means it is 

thermodynamically less favorable for Li deposition to occur during rapid recharge or low 

temperature than it is with a graphite anode; ii) a volumetric expansion that is considerably 

less than other high-capacity materials like Si (60% vs 400%); iii) and their capacities are 

several times greater than graphite. NiO has been a widely used conversion MO in LIBs.  

Its overall reaction is given by Equation 1.9: 

𝑁𝑖𝑂 + Li+ + e− ⇌ Ni + Li2𝑂 Equation 1.9 

NiO has a theoretical gravimetric capacity of 718 mAh g-1 and a very high density 

(6.67 g cm-3), which makes it an attractive material for both gravimetrically and/or 

volumetrically-constrained applications (e.g. space applications, electrified transportation, 

wearable electronics).32 
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Figure 1.6. | Anode selection list and their theoretical capacities. Reproduced with 

permission from Royal Society of Chemistry.30 

 

 

Figure 1.7. | Depicts the conversion reaction mechanism with MF3 as a representative 

material. The conversion process involves limited diffusion of the anion (e.g. F, O, N, P, 

etc.) to react with the Li+ during charge which generates metal (M) crystals and LiX. 

Reproduced with permission from Macmillan Publishers Ltd31 
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Despite these positive attributes, untailored NiO (raw or simple formulations with 

conductive carbon) is severely hindered by very poor cycle performance (~20 cycles results 

in 40-80% capacity loss)33,34 and poor rate capability, which is typically attributed to the 

intrinsically low conductivity (~10-4 to 10-5 Ω-1 cm-1)34 and the repetitive volumetric 

expansion/contraction during charge/discharge.32 However, this explanation only scratches 

the surface of what causes poor cycle performance and rate capability in NiO.  Thus, near-

elementary steps that occur during the NiO conversion reaction are provided in Equation 

1.10 through Equation 1.15 in Table 1.3, which is a combination of the work by Palmieri 

et al.34, Jow et al.35, and Soto et al.36 and applied in Ng et al.37 During the charge 

(reduction), Li desolvation occurs at the SEI/bulk electrolyte interface and then undergoes 

inclusion into the SEI.38 The propagation of LiSEI
+  through the SEI migrates to the bulk NiO 

(≡NiO-NiO) interface to form a ≡NiO-NiO-Li junction.35,37 Next, oxygen displacement 

occurs to form an ≡NiO-Niads
+ LiOads

− . Thermodynamically, Li2O exists at a lower energy 

state which makes the chemical reaction of LiSEI
+  and ≡NiO-Niads

+ LiOads
−  highly favorable 

and represented in Equation 1.14.34 During the nucleation event, the oxygen vacant 

≡NiO-Niads
+  reduces to ≡NiO-Ni. Based on the minimization of surface free energy (σNi >

σLi2O), any Ni that exists on the surface of the nucleation platform will exhibit a driving 

force for spontaneous rearrangement, and Li2O or other low surface free energy materials 

will phase segregate to the surface.39  Li2O has extremely low electronic conductivity, 

which can lead to increased kinetic and Ohmic resistances in the cells.   
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Table 1.3. | Reaction description and mechanism for the transport of Li+ from the bulk 

electrolyte to the conversion of NiO to Ni 

Description Reaction Mechanism Equation 

Li desolvation at the SEI/bulk 

electrolyte interface 
Lisolvated

+  ⇌  Li+  Equation 1.10 

Li transport through the SEI Li+ + ≡SEI ⇌ LiSEI
+  Equation 1.11 

Junction Formation LiSEI
+ + ≡NiO-NiO +  e−⇌  ≡NiO-NiO-Li Equation 1.12 

Displacement ≡NiO-NiO-Li ⇌ ≡NiO-Niads
+ LiOads

−  Equation 1.13 

Li2O Formation ≡NiO-Niads
+ LiOads

− +  LiSEI
+  

⇌ ≡NiO-Niads
+ + Li2O 

Equation 1.14 

Ni nucleation ≡NiO-Niads
+ + e- ⇌ ≡NiO-Ni Equation 1.15 

≡ Denotes bulk material 

 

In addition, during charge/discharge cycling electrochemical Ostwald ripening can 

result in the formation of larger crystals, which can lead to the growth of particles and a 

decrease in charge carriers at the electrochemically active sites.39 The Ni-core of large 

crystals can therefore become electrically and ionically isolated (via a large Li2O and NiO 

shell) and lead to trapped Ni metal within the bulk material.40 Furthermore, the destabilized 

oxygen balance due to the spontaneous phase segregation of Li2O leads to higher interfacial 

oxygen content within the Ni agglomerates, and promote the evolution to higher oxidation 

states (Ni2+ →Ni3+) during the discharge (oxidation) 34,41,42. When the electron flow 

switches during charge (reduction), the unstable higher oxidation states (Ni3+) can react 

with the SEI and/or electrolyte resulting in exposed reactive sites or irreversible 

consumption of active components.  

Spinner et al. 40 were one of the first groups to use identical-location transmission 

electron microscopy (IL-TEM) to explore how degradative processes evolve over the 

course of a few cycles and found that untailored NiO undergoes rapid structural 

degradation. Pre/post cycled X-ray diffraction (XRD) studies suggest that on a bulk-scale, 

the severe performance loss is attributed to NiO becoming trapped in the charged state. The 
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study continued to probe the interface of NiO via IL-TEM, and found that the structural 

degradation resulted in continuous merging and growth of active particles. Also, small and 

low/dark transmission particles (Z contrast) were discovered inside the SEI. The SEI is 

known to have electronic insulating properties, which can fully disconnect a NiO/Ni 

particle from the current collector, leading to loss of active material. As a result, severe 

capacity loss over limited cycles (<20 cycles) was observed. In another study with in-situ 

TEM, Su et al.43 found two dominant modes for MOs, 1) a violent reaction mode where 

agglomeration of small particles happens very fast (1-2mins), and 2) a gradual reaction 

mode where phase separation of MOs  form core-shell like particles with multiple domains 

consisting of M, MO, and Li2O – which expands the discoveries of Spinner et al.40 

Another concern of conversion electrodes is the large voltage hysteresis (i.e. the 

gap between the charge-to-discharge voltage), which ranges between several hundreds of 

mV to ~2 V,44 which limits the energy efficiency of the system. Li et al. 44 used a 

combination of X-ray absorption spectroscopy (XAS), TEM, density functional theory 

(DFT), and galvanostatic intermittent titration technique (GITT) to elucidate the root cause 

of large voltage hysteresis in conversion-based materials and found that FeF3 in a 1M LiPF6 

EC/DMC (1:1 volume ratio) electrolyte exhibits a fairly low iR drop but the overpotential 

required for nucleation, growth of phases, mass transport, and charge transfer between the 

Fe/LiF phases is quite large (spans up to 300mV for the FeF3→Fe/LiF charge and ~70mV 

for the Fe/LiF →FeF3 discharge). Another consideration that was proposed is the spatial 

distribution of each phase, which either facilitates or restricts access to Li+ and e-. In their 

observation from in-situ TEM, a core-shell behavior was found for the active material 

during lithiation (i.e. intermediate FeF2 core with a Fe/LiF shell in contact with the 
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electrolyte and conductive agents. During the delithiation, the core-shell reaction proposed 

by Li et al. 44 reverses with intermediate FeF2 covering the reaction surface, which is 

electrically and ionically insulating. Their conclusion for the large voltage hysteresis for 

conversion based FeF3 is based on comparing similar SOCs, and how an intermediate FeF2 

surface (Li-poor) and a Fe/LiF surface (Li-rich) will set the electrochemical system to 

different potentials vs Li/Li+
 (i.e. compositional inhomogeneity can result in ~400 mV).44 

Next, the evolution to higher oxidation states is an intrinsic barrier to conversion-

based transition metals. Transition metals can occupy multiple oxidation states (+1, +2, +3, 

+4, +7, etc.), which can either alter the system chemistry (i.e. destabilizing the counter-ion 

balance in the system) or introduce instability to the system (i.e. decomposition of SEI or 

electrolyte). Palmieri et al41,45 discovered the effects of higher oxidation states, by using a 

Mn-based oxide (MnxCo1-xO) as the system of interest and conducting cyclic voltammetry 

(CV) for different oxidation states of Mn-oxides. First, the CV study found mixed cathodic 

peaks that are present and ascribable to Mn3O4. Second, pre- and post-cycled X-ray 

photoelectron spectroscopy (XPS) was used to corroborate the electrochemical data and 

found that the deconvolution of the Mn 2p region, resulted in peaks that are attributed to 

Mn3O4 (mixed oxidation state of +2 and +3) and MnO (+2). The study proposed three 

possible root causes: 1) Mn3O4 formation coupled with the emergence of oxygen 

vacancies 46; 2) MnO reacts with oxygen-species (e.g. SEI components, electrolyte) to 

either attack the SEI and form reactive pockets or direct facilitation of the SEI growth; and 

3) the reactant dynamics are very high leading anisotropy in local stoichiometries and 

kinetically favoring the formation of higher oxidation states. 
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Cumulatively, the performance limitations of conversion-based materials can be 

broken down into four key mechanisms: 

1. Metal (charge) trapping within the SEI causes rapid loss of active material 

2. Particle agglomeration and compositional inhomogeneity results in larger 

overpotentials that limits accessible capacity within a fixed voltage range 

3. Destabilized oxygen balances and the reaction with the electrolyte or SEI leads to 

uncontrolled growth of the SEI and impacts the coulombic efficiency 

4. The transition of active material to higher oxidation states reduces the coulombic 

efficiency 

Much effort has been devoted to either eliminating the root cause or controlling the 

effects of degradation. One of which is regulating the key conductance parameters 

(interparticle and intraparticle conductivity), which has been proposed in the literature to 

have numerous benefits including: 1) minimization of the resistive losses within the cell, 

which enables higher achievable energy-densities and faster rate-capabilities; and 2) 

strategic control of ions and electrons that can minimize degradative processes within a 

cell (i.e., uniform ion flux and current densities can result in more homogenous reaction 

fronts). Inter-particle conductivity via the addition of either carbon black, graphene or 

carbon nanotubes has been shown to drastically improve the performance of MO anodes. 

Palmieri et al34,42 found that there is a direct correlation between the inter-particle electronic 

conductivity and the stable capacity (log-log linear relationship), a correlation between the 

enhancement of the intra-particle electronic conductivity to the evolution to higher 

oxidation states (i.e. attenuation of large particle-level polarizations), and more stable cycle 

performance. 
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 These degradative processes that are intrinsic to conversion-based materials are 

further investigated in Chapter 5, and methods to circumvent these them are studied in 

Chapter 6 for the development of next-generation LIBs.  

1.6 THEORETICAL FRAMEWORK FOR UNDERSTANDING THE 

PERFORMANCE AND LOSS MECHANISMS OF LI-ION BATTERIES 

The electrochemical mechanisms for the materials in the LIB anode and cathode 

were discussed in the previous sections.  However, that alone does not describe the 

behavior of the electrochemical system as a whole. In this section, fundamental 

relationships describing the thermodynamics, kinetics, and mass transfer of species in an 

operating Li-ion battery are discussed.  The goal here is to develop a framework that will 

be used in Chapters 3 and Chapter 4 to understand the cell-level and material-level 

properties, performances, non-idealities, and loss mechanisms. 

1.6.1 NONEQUILIBRIUM THERMODYNAMICS OF A CONCENTRATED SOLID SOLUTION  

Nonequilibrium thermodynamics47 captures the evolution of energy states with the 

assumption that the system proceeds through small perturbations from equilibrium, such 

that the changes can be linearized, and requires the system to be a reversible process. The 

chemical potential defines the differential energy of the system for a given change in the 

number of particles and can be defined in terms of state variables of the system by a 

Legendre transformation of the Gibbs-Duhem equation (e.g. internal energy, Helmholtz 

free energy, enthalpy, and internal energy):48 

𝜇𝑖 = (
𝜕𝐺

𝜕𝑛
) |𝑇,𝑃,𝑛𝑗≠𝑛𝑖

 
Equation 1.16 
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Therefore, the chemical potential (𝜇𝑖) relates the change in energy of the system to 

the change in the number of the specified species, and when the other species within the 

system remains constant. In other words, the transition from one state to another at 

equilibrium must have an energy change of zero - the definition must hold for the rate 

equation. The chemical potential of a species in a solid solution is defined as: 

𝜇𝑖 = 𝑘𝐵𝑇 𝑙𝑛 𝑎𝑖 + 𝜇𝑖
0 Equation 1.17 

where the activity can be further broken down via:  

𝑎𝑖 = 𝑐𝑖𝛾𝑖                                                                                                                         Equation 1.18 

Here, ci denotes concentration, 𝛾𝑖 represents the activity coefficient for additional 

non-ideal effects, 𝜇𝑖
0  is defined as the reference chemical potential where 𝛾𝑖 = 1; kB is 

Boltzmann constant; T is temperature. The activity considers the concentration effects and 

non-ideality.  

1.6.2 DIFFUSIVITY: MODIFIED FICK’S LAW 

Using the definition of the chemical potential, along with the general state energy 

diagram in Figure 1.8, random walk diffusivity of a species diffusing through a medium 

can be expressed as49: 

𝐷𝑖 =
(𝛥𝑥)2

2𝜏0 𝑒𝑥𝑝(
(𝜇,𝑖𝑇𝑆−𝜇𝑖)

𝑘𝐵𝑇
)

=
(𝛥𝑥)2

2𝜏0

𝛾𝑖

𝛾𝑖,𝑇𝑆
= 𝐷0

𝛾𝑖

𝛾𝑖,𝑇𝑆
                                                               Equation 1.19 

Here, 𝛥𝑥 is the average step length (i.e. the distance of one diffusive hop); 𝜏0 is the 

time between barrier-less transitions; 𝛾𝑖 = 𝑒𝑥𝑝 (
𝜇𝑖−𝜇𝑖

0

𝑘𝐵𝑇
) and 𝛾𝑖,𝑇𝑆 = 𝑒𝑥𝑝 (

𝜇𝑖,𝑇𝑆−𝜇𝑖,𝑇𝑆
0

𝑘𝐵𝑇
) are the 

activity coefficients of the diffusing particle in the inactivated and the transition (activated) 

states, respectively. Essentially, the excess chemical potential drives the random walk 
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diffusion (making it not just dependent on temperature and entropic effects), which can be 

determined by equating the squared distance of a diffusive hop to the probability for a 

particle to translate in the positive direction (factor of two) and the mean time for each 

transition. The diffusion flux of a species can then be calculated by47: 

𝐹𝑖 = −𝐷𝑖
𝑐𝑖

𝑘𝐵𝑇

𝜕𝜇𝑖

𝜕𝑥
= −𝐷0

𝛾𝑖

𝛾𝑖,𝑇𝑆
(1 +

𝜕 𝑙𝑛 𝛾𝑖

𝜕 𝑙𝑛 𝑐𝑖
) 𝛻𝑐𝑖                                                                                                                      

Equation 1.20 

Equation 1.20 can subsequently be further generalized as, 

𝐹𝑖 = −𝐷𝑐ℎ𝑒𝑚𝛻𝑐𝑖                                                                                                                                                                                                                Equation 1.21 

where 𝐷𝑐ℎ𝑒𝑚 is referred to as the chemical diffusivity and decomposed as49:  

𝐷𝑐ℎ𝑒𝑚 = 𝐷0𝐴𝐷                                                                                                                        Equation 1.22 

Here, pre-factor AD is defined, which collectively includes all the terms related to activity 

coefficient, 

𝐴𝐷 =
𝛾𝑖

𝛾𝑖,𝑇𝑆
(1 +

𝜕 𝑙𝑛 𝛾𝑖

𝜕 𝑙𝑛 𝑐𝑖
)                                                                                     Equation 1.23 

For a dilute solution, Fick’s Law can be recovered from Equation 1.20 when the 

activity approaches the actual concentration (𝑎𝑖 → 𝑐𝑖), the activity coefficient of the 

transition (activated) state approaches one (𝛾𝑇𝑆 → 1), and the pre-factor is equal to one 

(𝐴𝐷 = 1). For Li-ion diffusion in the solid electrode, Fick’s Law has been widely used, 

where Dchem is assumed to be a constant. However, as reported from experimental results50, 

the diffusivity obtained using Fick’s Law varies significantly as a function of SOC. Since 

the Li-ion concentration xLi changes substantially over the SOC range during 

charge/discharge, the dilute solution assumption breaks down, especially at high Li-ion 

concentration51. Therefore, the inclusion of the activity coefficient term 𝐴𝐷 becomes 

critical in correlating the diffusivity of Li-ion with SOC.  
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Figure 1.8. |  Typical energy landscape (a) diffusion; (b) reaction.49 

1.6.3 REACTION KINETICS: MODIFIED BUTLER-VOLMER EQUATION 

For the charge transfer reaction at the interface between the liquid electrolyte and 

solid electrode: 

𝐿𝑖+ + 𝑒− ⇌ 𝐿𝑖                                                                                                                         Equation 1.24 

The electrochemical potentials of each species are represented as:  

𝜇𝐿𝑖+ = 𝜇𝐿𝑖+
0 + 𝑘𝐵𝑇 𝑙𝑛 𝑎𝐿𝑖+ + 𝑒𝜙𝑖 Equation 1.25 

𝜇𝐿𝑖 = 𝜇𝐿𝑖
0 + 𝑘𝐵𝑇 𝑙𝑛 𝑎𝐿𝑖 + 𝑒𝜙𝑠 Equation 1.26 

𝜇𝑒 = 𝜇𝑒
0 − 𝑒𝜙𝑠 Equation 1.27 

where, i and s denote liquid phase and solid phase; e is the elementary charge on an 

electron, 1.6×10-19C;  is the electric potential. At equilibrium, the sum of the chemical 

potentials on each side of Equation 1.24 are equal, and: 

𝜇𝐿𝑖+ + 𝜇𝑒 = 𝜇𝐿𝑖 Equation 1.28 

The equilibrium potential, eq, between the Li+ and Li (𝛥𝜙𝑒𝑞 = 𝜙𝑠 − 𝜙𝑖) can be 

related to the activity of the reacting species by the Nernst Equation:  

𝛥𝜙𝑒𝑞 = 𝑉0 +
𝑘𝐵𝑇

𝑒
𝑙𝑛

𝑎𝐿𝑖+

𝑎𝐿𝑖
 

Equation 1.29 
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where 𝑉0 =
−𝜇

𝐿𝑖+
0 +𝜇𝐿𝑖

0 +𝜇𝑒
0

𝑒
. To model the charge transfer reaction for a nonideal solution, the 

activity of the reactants and products needs to be accounted for, and the transition state 

needs to be considered. Here, state 1 is Li+ and an electron, and state 2 is the Li in the active 

material. The potential of the transition state is the linear combination of the two present 

potentials, 

𝜇𝑇𝑆 = 𝜇𝑇𝑆
0 + 𝑘𝐵𝑇 𝑙𝑛 𝛾𝑇𝑆 + 𝛼𝑒𝜙𝑠 − (1 − 𝛼)𝑒𝛥𝜙                                                                                                                                                                                          Equation 1.30 

The coefficient α denotes the symmetry of the transition state. A general reaction 

rate for species proceeding between two states, denoted 1 and 2, can be represented by:  

𝑟 = −𝑘0 [𝑒𝑥𝑝 (−
(𝜇𝑇𝑆−(𝜇

𝐿𝑖++𝜇𝑒))

𝑘𝐵𝑇
) − 𝑒𝑥𝑝 (−

(𝜇𝑇𝑆−𝜇𝐿𝑖)

𝑘𝐵𝑇
)]                                                                                                                        

Equation 1.31 

where the reaction rate is defined in units of t-1, attempt frequency is ko, 1 is the chemical 

potential of state 1, 2 is the chemical potential for state 2,  𝜇𝑇𝑆 − (𝜇𝐿𝑖+ + 𝜇𝑒) is the 

forward reaction energy barrier, and 𝜇𝑇𝑆 − 𝜇𝐿𝑖 is the reverse reaction energy barrier.  

Defining another pre-factor, Ak and expressed as, 

𝐴𝑘 =
𝛾𝑂

(1−𝛼)𝛾𝑅
𝛼

𝛾𝑇𝑆
                                                                                          

Equation 1.32 

After plugging in 𝜇𝑇𝑆 and 𝛥𝜙𝑒𝑞 from Equation 1.30 and Equation 1.29, the 

reaction rate equation becomes49: 

𝑟 = 𝑘0𝑐𝑂
(1−𝛼)𝑐𝑅

𝛼𝐴𝑘 [𝑒𝑥𝑝 (
(1 − 𝛼)𝑒𝜂

𝑘𝐵𝑇
) − 𝑒𝑥𝑝 (−

𝛼𝑒𝜂

𝑘𝐵𝑇
)] 

Equation 1.33 

where 𝑘0 = 𝑘0 𝑒𝑥𝑝 (
(1−𝛼)(𝜇

𝐿𝑖+
0 +𝜇𝑒

0)+𝛼𝜇𝐿𝑖
0 −𝜇𝑇𝑆

0

𝑘𝐵𝑇
), 𝜂 = 𝛥𝜙 − 𝛥𝜙𝑒𝑞, and 𝛥𝜙 = 𝜙𝑠 − 𝜙𝑖; k0 is 

the attempt frequency.  The reaction rate Equation 1.33 recovers the Butler-Volmer 

Equation in Newman’s model for dilute solutions with 𝛾𝑂 = 𝛾𝑅 = 𝛾𝑇𝑆 = 1 and 𝐴𝑘 = 1. 
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The pre-factor 𝐴𝑘 affects the interfacial reaction rate constant for concentrated solutions 

over the whole SOC range. 

 As a result, a modified porous electrode theory for a LIB is presented in this 

section, which combines the Butler-Volmer equation with concentrated solution theory 

and standard porous electrode theory equations. The derivation here will later be used in 

Chapter 3 for studying non-ideality in electrochemical impedance spectroscopy (EIS) 

data for a Li(Ni0.5Mn0.3Co0.2)O2 system at various SOC.   
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CHAPTER 2: DECONVOLUTION OF THE THERMODYNAMIC, 

KINETIC, AND TRANSPORT PROPERTIES FROM COMMERCIAL 

LARGE FORMAT LI-ION BATTERIES 

Multi physics-based Li-ion battery models, developed by Newman’s group, use 

partial differential equations (PDEs) to describe the interfacial transport of charge carriers 

(e.g. electrons, ions, holes) and reactants across the solid/liquid interfaces of LIB cells.52,53 

In addition, LIBs under different operating conditions (e.g. high current, temperature 

variations) and cell configurations (e.g. 18650 cylindrical, prismatic, coin cell) lead to 

anisotropic distributions of voltage, temperature, and concentration.54,55 Newman’s 

pseudo-2D (P2D) models can describe complex behaviors inside LIBs.  However, solving 

the P2D model equations requires complex mathematical solvers. In addition to the 

electrochemical model, a generic thermal model was proposed by Bernardi et.al that 

utilized a general energy balance to determine the heat generation and temperature 

distribution within battery systems. Electrochemical-thermal coupled (ECT) models56–59 

have been developed to predict temperature effects on the capacity fade, performance, and 

the dynamic response of LIBs (e.g. pulse charge/discharge driving cycles). In general, ECT 

models follow two primary approaches: discrete or homogenous.60 The main tradeoffs 

between the two ECT approaches are accuracy and speed (i.e. discrete ECT has greater 

temperature accuracy but homogeneous ECT has faster computational speed). 

Furthermore, the parameters that describe the multi-dimensional and multi-physics 
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behavior inside LIBs need to be extracted experimentally61, fitted empirically62, or 

determined by ab initio calculation63.  Approximately 40 parameters need to be determined, 

which decreases the model flexibility when considering one LIB chemistry versus another. 

There are modeling strategies in the literature for reducing P2D models to a model that 

consists of only ODEs.64  However, many of these reduced-order models (ROMs) consist 

of overly complex mathematical artifices and transformations (i.e. parabolic profile 

estimation65,66, state-space67, Padé approximation68,69, orthogonal decomposition70), which 

require further development and optimization to convert into code for BMS 

implementation.67 

At low-to-moderate current densities, the current distribution throughout the LIB 

electrodes is essentially homogenous and the reactant concentration gradients are 

negligible. Under these conditions, the P2D model can be simplified to a single particle 

model (SPM), which idealizes the respective electrodes as a single porous and spherical 

particle.54,71 Both P2D and SPM models need many parameters (P2D ≃40 and SPM ≃22) 

to describe the electrodes, separator, and electrolyte properties, which can either be 

obtained from experiments or data fitting. The key problem in experimentally derived 

parameters is the destructive and invasive nature of the extraction procedure (e.g. cell-

teardown and reassembly). The experimental determination of model parameters can be 

very complex, and hence there have been very few studies focusing on combined modeling 

and experimental work of full-cells.72,73 It has been shown that it is possible to measure 

and combine the properties of each electrode and compare with the measurements 

performed on the full cell, which opens a new way of modeling Li-ion cells, without the 

need for complex experimentation.  Verma et. al50 was able to use galvanostatic 
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intermittent titration technique (GITT) to characterize the kinetic and transport properties 

of NMC532 and coupled the results with both SPM and P2D models. A surface roughness 

factor was incorporated to model the alterations in electrode/electrolyte interfacial area, 

diffusion coefficients, and exchange current densities.  However, the computational load 

of P2D and SPM models, with a large number of parameters, can be exhaustive and require 

fine meshes to predict the concentration and voltage gradients.74 Therefore, alternative 

modeling strategies that require fewer parameters and computational load are more 

advantageous for a BMS. Lower-dimensional or nondimensional models are traditionally 

evaluated with equivalent circuit models (ECM) (e.g. resistors, capacitors, inductors), 

which cannot be directly linked to any specific chemical/physical process inside a LIB.  

Hence, SPMs are preferred over ECMs in situations where computation power is limited, 

such as in a BMS, though a model that can capture the battery behavior with few parameters 

without losing connection to the physical world is much preferred.  It would also be 

advantageous if the experimental parameters could be determined without being 

destructive to the cells/stacks.   

To model a full-cell without the invasiveness of disassembling a full-cell and 

without needing to know the chemistry, a simplified numerical electrochemical-thermal 

battery model is presented in this section. The model requires only four parameters that 

need fitting/experimental measurements (later extracted in Section 2.2 and will be 

implemented in Section 2.3.2): the exchange current (i0S), the diffusion time constant (τ), 

the internal resistance (RIR), and the entropic heat coefficient (dUdT-1). The model is semi-

empirical and based on a lumped model developed by Ekström et al74 using the diffusion 

time constant (τ). The model presented consists of one PDE which solves the SOC equation 
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for the LIB full-cell, but in this section, the State Space approach is used to further reduce 

the PDEs to ODEs for rapid model calculation. The higher computational speed and model 

simplification to ODEs makes implementation in BMS chips more facile. In addition to 

this mathematical reduction, a thermal model is also coupled to the lumped model for 

evaluating the temperature and heat generation. For simplicity, the new model is defined 

as the tau lumped model (TLM). The calculation time of the TLM is reduced even further, 

but still requires physical interpretation, which an experimental methodology is developed 

to find the fitting bounds. Detailed experimental determination of the critical modeling 

parameters is reported in this section to accentuate the extremely high accuracy of the 

model in predicting the voltage and temperature profiles of a commercial 50Ah Samsung 

NCM532/Graphite Li-ion battery cell, using the simplified reduced electrochemical-

thermal lumped model.  

2.1 EXPERIMENTAL  

2.1.1 CELL TEARDOWN AND PHYSICAL CHARACTERIZATION 

Thermodynamic, kinetic, and transport properties for commercial LIBs were 

extracted from Samsung large-format 50Ah prismatic cells (refer to Figure 2.1a).   These 

cells were assembled with a LiNi0.5Mn0.3Co0.2O2 (NMC532) cathode and a graphite anode.  

There were two jelly rolls inside the casing (refer to Figure 2.1b). Most of the experiments 

focused on full-cell-level properties, while electrode-level experiments were also done to 

enhance interpretation and discussion.  To obtain the electrode-level properties, it was 

necessary to tear down the cells.  This allowed both physical characterizations to be 

performed and for individual electrodes to be rebuilt as half cells – where one electrode 

was paired with a Li foil counter/reference electrode. 
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Figure 2.1 | Photograph of (a) the large format 50 Ah prismatic cell and (b) one of two 

jelly rolls 

 

Cell teardown was conducted following complete discharge to a lower voltage 

bound of 2.8V, following a 24 hr relaxation time to reach electrochemical equilibrium. 

During the cell teardown process, the tabs were wrapped with electrical tape to prevent 

short-circuiting and transferred inside an argon-filled (Ar, UHP Praxair) MBraun 

Glovebox (H2O and O2 levels < 0.1ppm). First, two parallel lines separated by 1 mm were 

drawn 2 mm below and above the edge of the casing with a scalpel. A hydraulic prismatic 

cell opener was used to remove the casing on the drawn lines. The tabs and busbar were 

separated from the two jellyrolls for half-cell and electrode-level characterization purposes.  

Energy-dispersive X-ray Spectroscopy (EDX) and Scanning Electron Microscopy 

(SEM) were performed on a Zeiss Ultraplus Field Emission Scanning Electron 

Microscope. X-ray photoelectron spectroscopy (XPS) measurements were conducted on a 

Kratos AXIS Ultra DLD XPS system. Atomic ratios of Ni, Co, and Mn in the cathode 

active material were determined using a Perkin-Elmer Inductively Coupled Plasma Optical 

Emission Spectroscopy (ICP-OES). Electrodes that were salvaged from the 50Ah prismatic 

cells for chemical analysis were first cut into 1.76 cm2 disk electrodes and stored in EMC 
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(Ethyl-Methyl Carbonate) for 30 minutes to remove residual salts. Afterwards, the 

electrodes were transferred to an Ar-filled Kratos AXIS Ultra multipurpose transfer vessel 

and finally removed from the glovebox for physical characterization.  

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to 

confirm the atomic ratios of Ni, Co, and Mn in the cathode material (Table 2.1). In 

accordance with the linearity and sensitivity of the instruments, standard solutions of Li, 

Mn, Cobalt, and Ni have been prepared for the analysis. The cathode samples were digested 

in nitric acid and diluted as needed to match the standard solution concentrations. It was 

found that the cathode composition was Li0.978(Ni0.48Mn0.28Co0.20)O2. ICP-OES analysis of 

the anode found minor indications that possible Ni, Co, and Mn dissolution from the 

cathode occurred and subsequently redeposited on graphite. X-ray photoelectron 

spectroscopy (XPS) was also used to confirm cell chemistry. 

 

Table 2.1. | Table showing the atomic ratio of Li, Co, Ni, Mn in the cathode and anode 

obtained by ICP-OES. The cathode was found to be Li0.98Ni0.48Mn0.28Co0.20O2 and minor 

transition metal dissolution at the graphite anode. 

 
Li 610.37 nm Co 238.89 nm Ni 230.29 nm Mn 257.60 nm 

Cathode Intensity 69595 120889 290719 155454 

Relative Cathode Composition 0.98 0.20 0.48 0.28 

Anode Intensity 20840 136 290 195 

 

2.1.2 ELECTROCHEMICAL AND THERMAL CHARACTERIZATION 

LIB half-cells were assembled in an argon-filled MBraun glovebox at 5-8 psig to 

determine the electrochemical behavior of the cathode and anode independently with 

respect to a Li/Li+ reference state. The electrochemical tests were performed in CR2032 
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coin cells (Hohsen Corp.) – which had 1.76 cm2 lithium metal (99.9%, Alfa Aesar) 

counter/reference electrodes, 2320 Celgard tri-layer PP/PE/PP separators, and 1.2M 

lithium hexafluorophosphate (LiPF6, Acros 98%) salt in EC: EMC (3:7 by wt.%) 

electrolytes. Full-cell-level properties (voltage window: 2.8-4.25V) and electrode-level 

properties (anode voltage window: 0.001-1V vs. Li/Li+; cathode voltage window: 3-4.4V 

vs Li/Li+) were extracted through galvanostatic intermittent titration technique (GITT), 

1000Hz AC impedance, and constant current–constant potential (CC-CP) charge/discharge 

in a Tenney Temperature Control Chamber (temperature range of -15 to 45°C) with a Bio-

logic MPG-205 Battery Tester. The protocol for extracting the Open Circuit Potential 

(OCP) was outlined in Verma et al.50, but in short, the OCP was determined from the 

steady-state voltage during the relaxation period of the GITT experiment that will be 

discussed next. For the GITT experiments, two pre-conditioning full charge/discharge CC-

CP cycles were performed at C/3 (15A) before the repetitive pulse-rest GITT protocol. 

After the CP stage, the 50Ah cell was discharged at current pulses of C/10 (5A) for 1 hour 

followed by a relaxation period of 30 minutes. A total of 50 pulses were used in the GITT 

protocol.  

Entropic heat coefficient (dUdT-1) measurements were carried out by first fully 

charging the 50Ah cell at 45°C with the constant current-constant potential (CC-CP) 

procedure on an Arbin MSTAT battery cycler inside a Tenney T6S-1 Temperature Control 

Chamber. In a typical setup, four K-type thermocouples were attached to the 50Ah 

NMC532/graphite Li-ion battery body with heat-shrink skin, the body without skin, 

positive terminal, and ambient interior of the chamber. A Graphtec GL240 datalogger with 
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pre-calibrations for K-type sensors were tested in ice water (T = 0 °C) to ensure the 

reliability of the measurements. 

 The 50Ah cells were placed inside the chamber on a Teflon mat to insulate the cell 

from the metallic body of the thermal chamber. The cell was set in the upright position to 

minimize high surface area heat transfer for high fidelity modeling. The 50Ah cell was 

relaxed at OCP for 4 hours to reach thermal and electrochemical equilibrium. After 

relaxation, the temperature was reduced to 30 °C and held for 4 hours until thermal 

equilibrium was reestablished. The same procedure was repeated for experiments 

conducted at 20 °C, 10 °C, 0 °C, and -15 °C. After completion, the cell was reheated to 45 

°C for 4 hours and pulsed for 30 minutes at C/5 (10A), and allowed to relax for an 

additional 4 hours to reach equilibrium. The same temperature cycling procedure from 

45°C to -15°C was used for every decrement in SOC.  

The EIS experiments were conducted using an Autolab PGSTAT302N potentiostat 

for an NMC532/Li metal half-cell. In a typical procedure, the Li-ion half-cell was pulsed 

12 times with a current of C/20 for 2 hours. After each pulse, the cell was given time to 

reach electrochemical equilibrium (i.e. until open circuit voltage (OCV) reach (

1
dOCV

dt

V

s



) before an EIS measurement was taken. EIS was conducted at a frequency 

range of 20kHz – 0.01Hz with a sinusoidal voltage amplitude of 10mV in a Tenney T10RS 

climate control chamber set to 25oC. 

2.2 EXTRACTED COMMERCIAL BATTERY PARAMETERS 

Particle size and electrode thickness for both the anode and cathode were 

determined by creating a statistical distribution on 100 particles from SEM. Figure 2.2a 
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shows that the cathode consisted of spherical NMC cathode particles with a range of 

particle sizes between 0.129-24.89 µm, with an average of 6.32 µm. Figure 2.2 (a,b) shows 

a typical cross-sectional image of the cathode with an average thickness of ca. 50 µm. The 

deconvolution of the GITT dataset, by taking the steady-state voltage during the relaxation 

period, yielded the OCP as a function of lithiation state for NMC532 as shown in Figure 

2.2c. The OCP for the lithiated and delithiated state for NMC532 overlaps from the state 

of charge (SOC) = 20-70% and diverges slightly outside of that range.  

Figure 2.2d shows that the anode consisted of irregular shaped graphite particles 

with a range of sizes between 2.78-20.04 µm with an average particle size of 9.93 µm. 

Figure 2.2e shows a characteristic cross-sectional SEM image of the anode with an average 

electrode thickness of 68.77 µm. Figure 2.2f shows the OCP at various SOC, with the 

thermodynamically favored phases LiC32, LiC12, and LiC6 labeled as well. It should be 

noted that minor voltage hysteresis that is ascribed to phase transitions or order-disorder 

transitions can be observed in both the OCP vs SOC for NMC532 and graphite75–77. The 

diameter and the thicknesses of the electrodes were useful for estimating the diffusion 

length, which can be used to estimate a range for the time diffusion constant in the model 

(Refer to Table 2.2). 

 

Table 2.2. | List of parameters measured experimentally.  

Parameter Value Unit 

Diameters of NMC532 cathode - dp 6.32 µm 

Diameters of LiC6 anode - dn 9.93 µm 

Thickness of NMC532 cathode - lp 50.27 µm 

Thickness of LiC6 anode - ln 68.77 µm 
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Figure 2.2 | Physical and Electrochemical Characterization. Field-emission scanning 

electron microscope (FE-SEM) of (a,b) NMC532 cathode, and (c) galvanostatic 

intermittent titration technique (GITT) for the open circuit potential (OCP) of the cathode. 

(d,e) FE-SEM images of graphite anode and (f) GITT for the OCP of the anode. 

Reproduced with permission from Elsevier.78 

 

For the full-cell analysis, the entropic heat coefficient (dUdT-1) measurements were 

extracted from the OCP and temperature-vs-time plots at various SOCs from 100% charge 

to complete discharge in increments of 10% SOC.  

Figure 2.3(a-d) shows the characteristic OCP measurements as a function of 

temperature at various SOC. Across a wide SOC range (100% to 30%), the OCP decreases 

in a staging fashion similar to that of the temperature loss. Also, from 100% to 30% SOC, 

the differential OCP (dU) ranges from 2 mV to 9 mV and then transitions to an inverse 

relationship (i.e. OCP increases as the temperature of the cell drops). At SOC < 20%, dU 

ranges from -6 mV to -4 mV. The average OCP at electrochemical and thermal equilibrium 

was chosen for the entropy calculation. 
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Figure 2.3 | Entropic Heat Coefficient Calculations. Open circuit potential (OCP) changes 

due to temperature (T) for the calculation of dUdT-1 at various state of charge (SOC). 

Reproduced with permission from Elsevier.78 

 

In electrochemical systems, lowering the temperature does more than simply 

slightly modify the cell voltage.  The lower temperature also leads to a reduction in the 

conductance of charge carriers (e.g. ions, electrons), impedes Li+ ion migration within the 

SEI, elevates charge transfer resistance, and introduces diffusional limitations, which leads 

to large drops in cell-level voltage and capacity loss. Also, anodic overpotentials can reach 

the Li+/Li redox couple for Li-plating.79 To better understand these effects, the large format 

cells were charged at 25°C with CC-CP and relaxed at OCP at different iterations in 

temperature (-15°C, 10°C, 25°C, 45°C) to reach electrochemical and cell-level thermal 

equilibrium. 
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Figure 2.4 | Extracting Modeling Parameters at Different SOC and Temperatures. (a) Open 

circuit potential, (b) Area independent diffusivity (S2D), (c) exchange current (i0S), and (d) 

internal resistance (RIR) for 50Ah cells at different SOC (100% to 0%) and at varying 

temperatures (-15°C to 45°C). Reproduced with permission from Elsevier.78 

 

The OCP of the 50Ah cells at different temperatures and SOC is plotted in Figure 

2.4a. The OCP for 100% to 40% SOC from -15°C to 45°C follows a similar trend (i.e. 

temperature and OCP decreases in tandem) but then diverges at SOC < 30%. The 

divergence in OCP is proposed to be due to the onset of the next lithiation phase of graphite, 

LiC12
80. The first inflection point at 3.7V in the OCP of the 50Ah cell corresponds well 

with the NMC half-cell inflection point at 3.8V. Overall, the end-of-discharge capacity was 

determined to be 52.54Ah (T = 45 °C), 51.81Ah (T = 25 °C), 51.41, (T = 10 °C), and 47.41 

Ah (T = - 15 °C). 
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Figure 2.4b shows the effective area independent diffusivity (S2D) of the 50Ah 

cells and reflects the limiting diffusional process for the entire system during discharge (i.e. 

NMC532, graphite). It should be noted that the N/P ratio was determined to be 

approximately 1.24. The electrochemically active surface area (S) for both NMC and 

graphite varies with temperature and SOC, which makes the determination of the limiting 

S2D difficult. The effective chemical diffusion coefficient or diffusion time constant of Li+ 

ions change with SOC. During charge, the anode undergoes various degrees of lithiation 

to the thermodynamic stable phases LiC32, LiC12, and LiC6, and, due to an increase in 

electrostatic repulsive forces, the diffusion coefficient of the anode will decrease as a 

function of increased lithiation.81 On the other hand, the cathode exhibits opposite trends 

as the delithiation of Li+ from the bulk NMC crystal leads to more facile pathways for 

diffusion and leads to higher diffusion coefficients as the amount of Li in the crystal 

decreases.82 The non-destructive extraction of the effective diffusion coefficient (D) was 

obtained by GITT.  In the GITT method, the Li-ion cell system is perturbed by an applied 

constant current (I) for a specified pulse time (t) and relationships from the relaxation 

period to the pulse time give the chemical diffusion coefficient83.  

𝐷 =
4

𝜋
(

𝐼𝑉𝑚

𝑧𝐹𝑆
)

2

[
𝑑𝑈

𝑑𝑆𝑂𝐶⁄
𝑑𝑉

𝑑√𝑡
⁄

⁄ ]

2

 
Equation 2.1 

where Vm is the molar volume of the active material, F is Faraday’s constant (F =96485.3 

C mol-1), z is the charge number of the carrier ion, S is the electrochemical active surface 

area, U is the open circuit potential (OCP), V is the measured voltage, SOC is the state-of-

charge, and 𝑑𝑈 ⁄ 𝑑𝑆𝑂𝐶 or 𝑑𝑉 ⁄ (𝑑√𝑡) were calculated from the linear regression of each 

pulse. During the pulsation period, the voltage will exhibit a pseudo-instantaneous jump 
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when current is applied, followed by a steady increase in the voltage. These two regions 

can then be deconvoluted to express the ohmic plus the kinetic overpotentials (𝜂𝐼𝑅 + 𝜂𝐶𝑇) 

and the concentration overpotential 𝜂𝐶 , respectively. The ohmic resistance as calculated is 

negligible to that of the kinetic contributions.  Because of this, the ohmic overpotential is 

subsequently neglected.   

 

Table 2.3 | Table showing the dimensions of the 50Ah cell and the 1000Hz AC ohmic 

resistance measurement.  

Length 

[mm] 

Width 1 

[mm] 

Width 2 

[mm] 

Width 3 

[mm] 

Height 

[mm] 

 AC 

Resistanc

e at 1000 

Hz [mΩ] 

147.8 27.21 26.64 27.14 91.21  0.783089 

 

By applying GITT relations for diffusivity and keeping S independent for parameter 

estimation, S2D shows a decreasing trend when the temperature drops from 45°C to -15°C 

and as SOC goes from 100% to 0%. However, at 45°C the diffusivity spikes towards low 

SOC (15% to 5%), which is attributed to the phase transition from graphite and seen as an 

additional plateau at 3.26V (i.e. phase transition from the thermodynamic stable phase 

LiC12 to LiC32) in the OCP vs SOC plot for the 50Ah cell. The phase transition is consistent 

with the entropic heat coefficient measurement,80 where at higher temperatures, the 

differential OCP between LiC12 and LiC32 shrinks and gives rise to the LiC32 plateau. Also, 

lower overpotentials in graphite at both elevated temperatures and low SOCs 

simultaneously lead to more cell-level capacity. 
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The electrochemical kinetics of the cell can be represented by the Butler-Volmer 

(BV) current density formulation shown in Equation 2.2, followed by the linearized BV 

expression (which assumes low kinetic overpotentials) as shown in Equation 2.3.50: 

𝑖 =
𝐼

𝑆
= 𝑖0 [𝑒𝑥𝑝

𝛼𝑎𝑧 𝐹
𝑅𝑇 𝜂𝐶𝑇 − 𝑒𝑥𝑝

𝛼𝑐𝑧 𝐹
𝑅𝑇 𝜂𝐶𝑇] Equation 2.2 

𝑖 =
𝐼

𝑆
=

𝑖0(𝛼𝑎 + 𝛼𝑐)𝐹

𝑅𝑇
𝜂𝐶𝑇 =

𝑖0𝐹

𝑅𝑇
 𝜂𝐶𝑇 ;  𝑖𝑜𝑆 =

𝑅𝑇

𝐹

𝐼

𝜂𝐶𝑇
 Equation 2.3 

where i is the current density, i0 is the exchange current density, α is the transfer coefficient, 

z is the number of electrons participating in the electrode reaction (z = 1), R is the universal 

gas constant (R = 8.314 J mol-1 k-1), T is the temperature (T = 293.15 K), and ηCT is the 

charge transfer overpotential.  

The charge transfer resistance, RCT, can be deconvoluted from the 50Ah full-cell 

GITT measurements by applying the linearized Butler-Volmer equation and extracting the 

exchange current (i0S) as given in Equation 2.2 and Equation 2.3. It should be noted that 

the extraction of the electrochemical active surface area (S) is difficult for LIB electrodes 

due to faradaic processes buried inside the double-layer response in cyclic voltammetry 

and also varies depending on the volumetric expansion/contraction of the electrode active 

material at different temperatures due to thermal expansion, lithium-induced expansion 

(13.2% volume expansion from LiC12 to fully lithiated LiC6),
84 and/or lifetime history 

(particle detachment85, graphite exfoliation86). Therefore, neither the experiments nor the 

model attempt to decouple exchange current density and the electrochemical surface area 

(i0S). Figure 2.4c shows the extracted value for the effective i0S in the 50Ah full-cell. The 

i0S decreases at lower temperatures and the i0S vs SOC oscillatory behavior shrinks. The 

i0S behavior indicates sluggish kinetics at low temperature (-15oC) and the typical increase 
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at near 50% is not apparent when compared to the other temperatures (10oC, 25oC, 45oC). 

During the NMC half-cell inflection at 3.8V or full cell inflection at 3.7V, the exchange 

current of the cell drops, which shows that the number of reactions is controlled by the 

cathode. Figure 2.4d represents the internal resistance RIR of the cell and shows an 

increasing trend at lower temperatures. 

 

Table 2.4 | Table showing the method used to measure the average active material loading 

of the anode and the cathode. 

Anode Initial Mass Mass of Electrode Mass of Particles 

Average 59.44 16.27 12.27 mg/cm2 

StDev 2.27 0.70 1.99 

Cathode Initial Mass Mass of Electrode Mass of Particle 

Average 88.40 9.11 22.53 mg/cm2 

StDev 1.00 0.65 1.10 

 

Based on the results above, estimates for the various parameters needed to be made 

as a function of temperature.  These are summarized in Figure 2.5(a,b). The average 

exchange current (i0S), area independent diffusivity (S2D), and internal resistance (RIR) 

across 0% to 100% SOC are plotted in Figure 2.5a.  There is an increasing trend for i0S 

and S2D at increasing temperatures (-15 °C to 45 °C), which corresponds to improved 

kinetics and mass transfer. Additionally, the internal resistance of the cell decreased at 

elevated temperatures. Figure 2.5c shows 2 cycles of constant current-constant potential 

(CC-CP) with the temperature measurements on the 50Ah cell terminal and casing body. 

The parameters extracted from Figure 2.5 (a,b) will be implemented into the model and 

used to validate Figure 2.5c for model fidelity. 
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Figure 2.5 | Modeling Parameters and Cycling Profile. (a) Represents the average 

exchange current (red line), area independent diffusivity (black line), and ohmic resistance 

(blue line), (b) entropic heat coefficient at different state of charge, and (c) CC-CP charge-

discharge profile with temperature measurements on the 50Ah cell terminal and casing 

body. Reproduced with permission from Elsevier.78 

 

2.3 ELECTROCHEMICAL-THERMAL MODEL: PERFORMANCE PREDICTIONS 

OF COMMERCIAL LI-ION BATTERIES 

2.3.1 REDUCED ORDER LUMPED MODEL (TLM-MODEL) 

The tau lumped model presented by Ekström et al.74 provides the possibility to 

model a full cell and consists of the equations presented in Table 2.5.  
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Table 2.5 |  Table showing the equations in the lumped model from Ekström  et al.74 

Model Equations  

SOC estimation 
𝜏

𝜕𝑆𝑂𝐶

𝜕𝑡
+ ∇ ⋅ (−∇𝑆𝑂𝐶) = 0 Equation 2.4 

𝐁𝐂: ∇𝑆𝑂𝐶|𝑥=1 =
𝜏𝐼𝑐𝑒𝑙𝑙

3𝑄𝑐𝑒𝑙𝑙,0
 Equation 2.5 

𝐁𝐂: ∇𝑆𝑂𝐶|𝑥=0 = 0 Equation 2.6 

𝐈𝐂: ∇𝑆𝑂𝐶|𝑡=0 = 𝑆𝑂𝐶𝑐𝑒𝑙𝑙,0 Equation 2.7 

𝑆𝑂𝐶̅̅ ̅̅ ̅̅ = 3 ∫ 𝑆𝑂𝐶 𝑥2𝜕𝑥
1

0

 Equation 2-8 

Overpotential 

calculations 
𝑉𝑐𝑒𝑙𝑙 = 𝑈(𝑆𝑂𝐶̅̅ ̅̅ ̅̅ , 𝑇) + 𝜂𝑖𝑟 + 𝜂𝑎𝑐𝑡 + 𝜂𝑐𝑜𝑛𝑐 Equation 2.9 

𝜂𝑖𝑟 = 𝐼𝑐𝑒𝑙𝑙𝑅𝑐𝑒𝑙𝑙 Equation 2.10 

𝜂𝑎𝑐𝑡 =
2𝑅𝑇

𝐹
asinh

𝐼𝑐𝑒𝑙𝑙

2𝑖0𝑆
 Equation 2.11 

𝜂𝑐𝑜𝑛𝑐 = 𝑈𝑐𝑒𝑙𝑙(𝑆𝑂𝐶|𝑥=1, 𝑇) − 𝑈(𝑆𝑂𝐶̅̅ ̅̅ ̅̅ , 𝑇) Equation 2.12 

𝑈(𝑆𝑂𝐶̅̅ ̅̅ ̅̅ , 𝑇) = 𝑈𝑟𝑒𝑓(𝑆𝑂𝐶, 𝑇)

+ (𝑇 − 𝑇𝑟𝑒𝑓)
𝑑𝑈(𝑆𝑂𝐶)

𝑑𝑇
 

Equation 2.13 

 

In this section, the notations were slightly modified to introduce the temperature 

dependency of the open circuit potential. The equations from Table 2.5 can predict the 

voltage profiles for a driving cycle with relatively high precision.74 Two main advantages 

make this model reliable: it is fast and requires no knowledge of cell chemistry. Even 

though it is a relatively fast model, it still contains one PDE (Partial Differential Equation), 

which requires a one-dimensional meshed domain, making it difficult to implement in the 

chipsets of a BMS, for example. In this study, the PDE shown in Equation 2.5 was reduced 

to a series of ODEs given in Equation 2.15 to Equation 2.17: 

𝜏
𝜕𝑆𝑂𝐶

𝜕𝑡
+ ∇ ⋅ (−∇𝑆𝑂𝐶) = 0 

Equation 2.14 
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𝜕𝑆𝑂𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝜕𝑡
=

3𝐼

3𝑄0
 

Equation 2.15 

SOCsurface = 𝑆𝑂𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 + ∑ 𝑄𝑖

𝑁=4

𝑖=1

 

Equation 2.16 

𝑑𝑄𝑖

𝑑𝑡
=

𝑎𝑖𝑄𝑖

𝜏
+

𝑏𝑖I

3𝑄0
 

Equation 2.17 

𝑆𝑂𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡 = 0) = 𝑆𝑂𝐶0 Equation 2.18 

Equation 2.15 - Equation 2.17 were used to model the average SOC and the SOC 

at the surface. In addition to this simplification, a heat generation term was also added to 

the model for calculating the temperature (Equation 2.19): 

𝑄̇𝑔𝑒𝑛 = I (𝑉𝑐𝑒𝑙𝑙 − U(SOCaverage) + 𝑇
𝑑𝑈(𝑆𝑂𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

𝑑𝑇
)                                                                                                                                                                                                  

Equation 2.19 

where I is the current applied to the cell, U is the open circuit potential, Vcell is the potential 

of the cell, calculated with Equation 2.9, T the temperature of the cell, and the last term 

represents the variation of the OCP with the temperature, which in the heat generation term 

represents the reversible heat generation due to the displacement of the lattice during the 

intercalation/de-intercalation. While the cell potential was calculated with the model, the 

reversible term requires time-consuming experiments. 

The Biot number was calculated to check if the cell can be modeled as a lumped 

capacitance model (Equation 2.20): 

𝐵𝑖 =
ℎ𝐿𝑐

𝑘
 

Equation 2.20 

where h is the heat transfer coefficient, Lc is the characteristic length and k is the effective 

thermal conductivity of the cell. The heat transfer coefficient is calculated using the Nusselt 

correlations considering natural convection for a vertical block with the dimensions 
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provided and the thermal conductivity derives from Lundgren et al87. For both thermal 

conductivities (in-plane and through-plane), the Biot number is smaller than 0.1, which 

means that that cell can be modeled using the lump capacitance model88 using Equation 

2.21: 

𝑚𝑐𝑒𝑙𝑙𝐶𝑝
𝑑𝑇

𝑑𝑡
= 𝑄̇𝑔𝑒𝑛 − ℎ𝐴(𝑇 − 𝑇𝑎𝑚𝑏(𝑡))                                                                                                                                                                                                          Equation 2.21 

The mass of the cell (mcell) was measured experimentally, while the specific heat 

(Cp) was taken from Schmalstieg et al72. The ambient temperature increases slowly with 

time and was extracted from the data logger. The final TLM consists of Equation 2.9 to 

Equation 2.21. The time diffusion constant (τ) from Equation 2.17, the exchange current 

(i0S) from Equation 2.11, and the ohmic overpotential (ηIR) from Equation 2.10 are the 

unknowns that require fitting or experimental determination. The complete list of 

parameters can be found in the next section, in Table 2.7. Calculating or measuring these 

parameters using experimental data is a challenging task since the model was used for 

modeling a full-cell and not for separate electrodes.  

2.3.2 APPLICATION OF EXPERIMENTAL BATTERY PARAMETERS INTO THE MODEL 

The Levenberg-Marquardt nonlinear optimization method was used for fitting the 

three parameters during a discharge process for the 50Ah cells at a constant current (CC) 

of 15A (0.3C) in ambient conditions. After the optimization, the fitted values were 

extracted and inserted into the final model. The TLM model showed an excellent 

agreement with the experimental data when comparing the potentials, as seen in Figure 

2.6.   
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Figure 2.6. | Plot showing the cell potential calculated using the TLM and the potential 

measured experimentally for a discharge process of 0.3C. Reproduced with permission 

from Elsevier.78 

 

    

Figure 2.7. | Plots showing the cell temperature calculated using the TLM and the potential 

measured experimentally for a CC discharge process of 0.3C when a) the reversible term 

is included and b) when the reversible term is neglected. Reproduced with permission from 

Elsevier.78 

 

The difference between the experiment and the model is less than 7 mV on average 

over the entire discharge time. The temperature calculated using Equation 2.11 also shows 

good agreement with the experimental data, as seen in Figure 2.7. The temperature 

calculated with the model not only shows a good agreement with experimental data, but it 

also follows the phase changes within the cell and the subsequent alterations in the entropic 

(b) (a) 
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heat coefficient (dUdT-1) at different SOCs. When the dUdT-1 term is neglected in Figure 

2.7b, the temperature differences are still small, but the model does not capture the 

influence of phase changes within the cell. The fitted parameters used for getting the data 

in Figure 2.6 and Figure 2.7 are given in Table 2.6. 

Table 2.6 | Model parameters calculated using the Levenberg-Marquardt optimization 

method. 

i0S [A]  τ [s] ηIR [V] 

6.808 1716 0.0028 

 

The exchange current (i0S) has the electrochemical active area (S) embedded in the 

term for the entire cell as it is exceedingly difficult to deconvolute. The exchange current 

was measured experimentally at different temperatures for the entire cell (Figure 2.5), but 

at 25°C, the average value over the entire discharge time was around 6.8 A, which is very 

close to the value obtained using the Levenberg-Marquardt optimization method. This 

observation shows that it is possible to measure this parameter for a full-cell, reducing the 

number of unknowns that require fitting. The time diffusion constant (τ) can be calculated 

analytically using the following equation89: 

𝜏 =
𝑙2

𝐷
 

Equation 2.22 

where l is the electrochemical diffusion length, which can be the thickness of the electrode 

in thin-film electrodes or the particle radius, and D is the diffusion coefficient. For this 

section, the diffusion length was assumed to be the radius of the particles, for finding the 

fitting bounds. Because the study was focused on a full-cell rather than on individual 

electrodes, it is important to find which radius can be used, the cathode or the anode. Taking 

the constant value for the graphite anode diffusion coefficient from Sikha et al90, the 
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diffusion time constant was found (τ) to be a value of 630.8 s, which is lower than the one 

predicted by the model. When considering the diffusion coefficient from Yang et al91 and 

the measured radius of the cathode, the time diffusion constant yields values between 64 s 

and 12,948 s, which is extremely wide. However, the value given by the fitting process 

falls in between this range and it can give the bounds for the parameter estimation process.  

The ohmic overpotential (ηIR) is calculated using the internal resistance of the cell 

and the discharge current. For a CC discharge process of 15A and a resistance of 0.79 mΩ 

at 25°C, the ohmic overpotential gives 0.012 V, which is higher than the value fitted in the 

model. By using the values of the exchange current (i0S = 6.8 A), the time diffusion of the 

anode (τ = 630.8s) and the internal resistance at 25°C (Rcell = 0.79 mΩ), the model still 

shows a good agreement with the experimental data, as seen in Figure 2.8, which indicates 

that the values for the TLM can be obtained experimentally. The exchange current can be 

measured using the GITT method for a full-cell and the internal resistance can be directly 

measured for a full-cell using the AC resistance at 1kHz. However, the diffusion coefficient 

term for the entire cell contains the electrochemical area, which requires additional 

deconvolution. \ 

 

Figure 2.8. | Plot showing the cell potential calculated using the TLM and the potential 

measured experimentally for a discharge process of 0.3C using the measured internal 

resistance and the exchange current at 25°C. Reproduced with permission from Elsevier.78 
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An exceptionally good agreement between the model and the experiment can be 

observed when increasing the discharge current to 25 A (0.5C) as seen in Figure 2.9a. 

When increasing the discharge current to 50A or 1C (Figure 2.9a), the model still shows a 

good agreement for almost the entire discharge process, with the exception that at the end 

of discharge (EOD), the model predicts a slightly lower capacity. This indicates that at 

rates that are higher than 0.5C, the parameters should be set to be dependent on the C-rate 

or the temperature (e.g. such as an Arrhenius dependency), considering that the measured 

parameters depend on the temperature, but this is beyond the scope of this work.  

 

Figure 2.9. | Plots showing the cell potentials calculated using the TLM and the potential 

measured experimentally for a) a discharge process of 0.5C and for b) a discharge process 

of 1C, using the measured internal resistance and the exchange current at 25°C. 

Reproduced with permission from Elsevier.78  

 

Table 2.7 | Parameters used for model. 

Symbol Description Value Unit Source 

SOC0 Initial state of charge 1 - Estimated 

I Applied current 15/25/50 A Measured 

Q0 Cell capacity 50 Ah Estimated 

Cp Specific heat of the entire cell 937.5 J kg-1 K-1 [87] 

h Heat transfer coefficient 4.5 W m-2 K-1 Calculated 

[88] 

A Surface of cell exposed to convection 0.0359 m2
 Measured 

mcell Mass of the cell 0.875 kg Measured 

Tref Reference temperature  298.15 K Measured 

Tamb Ambient temperature 294.15 K Measured 

(b) (a) 
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2.4 SUMMARY 

Non-destructive experimental extraction of parameters through a pulse-relaxation 

GITT method can map the temperature and SOC dependent parameter surface for the OCP, 

exchange current (i0S), diffusion time constant (τ), internal resistance (RIR), and the 

entropic heat coefficient (dUdT-1). Also, the reduced order Lumped electrochemical-

thermal model (TLM) is fully capable of utilizing the extracted parameters to obtain fast 

calculation times for voltage and temperature predictions that are consistent with the 

experimental measurements. The TLM model deviates at high current densities (>1C) from 

cell-level SOCs < 5%; however, LIB packs typically operate within the voltage plateau 

(SOC = 10% to 100%) and BMS discharge cutoffs occur at a specified dV dt-1 to ensure 

pack longevity.  

In summary, the State Space approach (PDE to ODE transformation) is an effective 

method to greatly enhance the calculation time for BMS applications, and the non-

destructive GITT measurement for four cell-level parameters (i0S, τ, RIR, dUdT-1) is 

directly relatable to mathematical quantities in the reduced order-TLM. In a world that 

requires faster calculations/computational time, a novel method to extract parameters non-

destructively can be implemented as initial guesses to increase the convergence time and 

approach higher-fidelity voltage and temperature predictions.  
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CHAPTER 3: INVESTIGATION OF THE KINETIC AND TRANSPORT 

NON-IDEALITIES IN COMMERCIAL LI-ION ELECTRODES - 

DECONVOLUTING COMPLEX ELECTROCHEMICAL IMPEDANCE 

SPECTROSCOPY DATA 

Chapter 2 explored cell-level properties (OCV, i0S, τ, RIR, dUdT-1) for large 50Ah 

commercial cells and applied those parameters into a Lumped reduced-order model that 

utilized a State Space transformation for order reduction.  The full cell model in Chapter 2 

plays a significant role when fast computational speed, low processing power, and 

minimal/nondestructive parameter extraction is needed. However, the model cannot 

capture a necessary-level of fidelity at high C-rates, nor any information at the electrode-

level. Therefore, this chapter uses a modified version of the porous electrode theory to 

investigate the impedance response of a LIB at a higher level of fidelity and complexity.  

Electrochemical impedance spectroscopy (EIS) is widely considered to be a 

powerful characterization tool for separating individual electrochemical processes by their 

timescales and enabling quantitative analysis of electron transport, interfacial reaction 

mechanisms, and Li-ion intercalation processes. EIS has been widely used to estimate the 

diffusivity (D) of Li-ions in the solid active materials and the reaction rate constant (k) at 

the electrolyte/electrode interface. The quantitative analysis of EIS data is highly 

complementary to the development of physics-based models (PBMs)92,93. Macroscopic 
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PBMs of Li-ion cells and batteries began with a relatively simple Fick’s law governed 

solid-phase Li-ion diffusion model, extended from Atlung et al.’s94 work in 1979 and 

named by Santhanagopalan et al.95 as the single-particle (SP) model in 2006. Another 

dominant Li-ion cell full-order model (FOM), commonly referred to as the “pseudo-2D 

model (P2D)”, was developed in 1994 by Fuller et al.96, who represented a dual foil Li-ion 

cell by a pseudo-two-dimensional domain. 

Even though PBMs contain most battery physics that represent the key 

electrochemical processes, it is possible that some important physics-based phenomena are 

neglected.  For example, in a general PBM of LIBs, Li-ion diffusion is governed by Fick’s 

law in a dilute solution, which neglects the thermodynamic nonideality of the solid active 

material, which experiences large concentration variation during charge/discharge. 

Although both k (solid/liquid interface reaction or Li-ion intercalation rate) and D 

(diffusivity of Li-ion in a solid phase) have exhibited correlations with Li-ion content xLi 

(equals 1-SOC, state of charge), especially at the end of discharge, they have been assumed 

to be constants over the entire range of SOC68.  Likely because of this, their values reported 

from different experimentalists show a wide variation spanning two-to-five orders of 

magnitude97.  With this large variation, both battery SOC and State-of-Health (SOH) will 

remain unpredictable, which means that, ultimately, true battery management and 

diagnosis remains uncertain. 

In the existing literature, the occurrence of nonideality of mixed conducting 

materials has been widely reported when the charge carrier concentration comprises a 

significant percentage of the total lattice sites. Concentrated solution theory, with the 

inclusion of the activity coefficient of the transporting ion, has generally been employed to 
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account for the nonideal portions of the thermodynamic properties. This chapter seeks to 

understand the nonideality of a solid Li-ion active material using nonequilibrium 

thermodynamics in a concentrated solution to correlate k and D with the activity coefficient 

of the solid solution (γ). These new correlations are then paired with deconvoluted EIS 

experimental data, where regression is done to determine the experimental γ. This research 

provides theoretical explanations of the governing mechanisms for such nonlinear 

interrelationships and a mathematical methodology is developed to obtain such correlations 

by parameter estimation with experimental data. 

The model was developed for a Li-ion half-cell with the geometry illustrated in 

Figure 3.1. This cell includes a porous cathode consisting of solid particles, a polymer 

separator, and a lithium metal foil that acts as both the counter and reference electrode. The 

governing equations for this half-cell model are like Newman’s pseudo-2D model, 

including the solution phase Li-ion diffusion, charge conservation in the electrolyte, charge 

conservation in the cathode, and Li-ion diffusion in the cathode particle. 

 

Figure 3.1. | Schematic of a Li-ion half-cell PBM. The porous electrodes are formed by 

spherical insertion particles. Reproduced with permission from IOP Publishing.98 
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3.1 EXPERIMENTAL EXTRACTION OF ELECTRODE-LEVEL PARAMETERS 

There are around 40 parameters that are needed from experimental measurements 

to run the PBM model. To characterize the anode and cathode separately, Samsung 

prismatic 50Ah cells were dissected, and then electrodes were cut from each side to 

construct coin cells in a half-cell configuration. By doing this, the number of parameters 

can be reduced to 20. These cells had an NMC532 cathode, resulting in half-cells 

containing the commercial cathode and a Li metal anode/reference. Several material 

characterization methods were used to deduce chemical and structural information that can 

be correlated to the information gained from EIS studies. These studies are also designed 

to provide essential input for the new physics-based EIS model. 

3.1.1 MATERIAL CHARACTERIZATION  

The microstructure, composition, and electrical conductivity of the extracted 

NMC532 cathodes were characterized by scanning electron microscopy (SEM), mercury 

intrusion porosimetry (MIP), X-ray photoelectron spectroscopy (XPS), and four-terminal 

Linear Scan Voltammetry (LSV). Detailed descriptions of each method are given in the 

supplementary material. Surface and cross-sectional SEM images were taken to create a 

statistical distribution of the particle diameter and electrode thickness using ImageJ so that 

the electrode active area (S) could be assessed. Further, MIP was used to determine the 

electrode porosity and provide complementary information about the electrode active area. 

Specifically, the electrodes were cut into 1.76 cm2 disk electrodes and then massed. Then, 

they were delaminated from the current collector using a scalpel. Each component was 

massed to determine its loading and weight. Ten trials were done for each sample. The 

samples were then cut into 2mm squares and placed into a holder. The active material mass 
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was used for porosimetry measurements. XPS and four-terminal LSV measurements were 

conducted to confirm the elemental composition of the active material and determine the 

electrical conductivity, respectively. 

3.1.2 CELL TEARDOWN AND COIN CELL ASSEMBLY 

Samsung prismatic 50 Ah cells purchased from the market were disassembled to 

make CR2032 coin cells in the half-cell configuration, as shown in Figure 3.2. In a typical 

cell disassembly, the cell was fully discharged to the lower voltage bound (2.8V) and 

allowed to stabilize for 24 hours. The cell tabs were taped with electrical tape to prevent 

any abrupt short-circuiting upon transfer. After transferring the cell into the glovebox, a 

scalpel was used to draw 2 parallel lines 1 mm apart and 2 mm from the top and bottom on 

the face of the cell. A total of 8 lines were drawn on the casing. A diagonal plier was used 

to remove the casing at the previously drawn lines. Upon removal of the casing, the tabs 

and busbar were removed to separate the two jellyrolls (Figure 3.2b). Jellyroll 1 was 

unraveled, measured with a Fisher Scientific Traceable® caliper, and then discarded. 

Jellyroll 2 was sealed away for coin cell assembly. 

 

Figure 3.2. | Images depicting the teardown process with (a) Ar-filled MBraun glovebox 

<0.1 ppm H2O and O2, (b) side view of the 2 jelly rolls, (c) tab orientation, and (d) a face 

view of a jellyroll. 
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3.1.3 PHYSICAL CHARACTERIZATION  

Scanning Electronic Microscopy (SEM) was conducted on a Zeiss Ultra Plus Field-

emission Scanning Electron Microscope. In typical sample preparation, the electrode was 

cut with a scalpel and placed vertically onto the stage. Several images were captured 

(representative image of the NMC532 cathode in Figure 3.3a) to create a statistical 

distribution.  

 

Figure 3.3. | a) SEM images of electrode cross-sections; b) the box and whisker graph of 

particle size and one side electrode thickness; (c) the cumulative pore area and porosity 

distribution of cathode, anode, and separator calculated from mercury intrusion 

porosimetry. 
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The particle size and electrode thickness were determined to be an average of 100 

samples and were calculated with ImageJ. Figure 3.3a are the SEM images of both 

NMC532 cathode and Graphite anode. In Figure 3.3b, their particle sizes were collected 

statistically, and are 6.32 for NMC532 and 9.93μm Graphite; their electrode thicknesses 

are 50.27 for the cathode and 68.77 μm for the anode.  

Mercury porosimetry was conducted on the anode and cathode by first passivating 

the current collector in an oven at 100oC for 24 hours. The electrodes were cut into 1.76 

cm2 disk electrodes and massed. The electrodes were then delaminated from the current 

collector by using a scalpel. The separate components were massed to determine the 

loading and the weight of the current collector. Ten trials were done for each sample. The 

samples were then cut into 2mm squares and placed into the holder. The active material 

mass was used for porosimetry. Figure 3.3c shows the pore area versus the pore size 

diameter, together with the measurements for porosity. The dimension, porosity, and 

particle size will be used in the Physics-based EIS model later. 

3.1.4 ELECTRONIC CONDUCTIVITY OF ELECTRODES 

In a typical electronic conductivity measurement, the active electrode material was 

removed from the current collector with a scalpel then pressed into a pellet with an MTI 

hydraulic press. Silver wires and silver paste were used to decrease contact resistance 

between the bipotentiostat and the pellet. Figure 3.4 shows the electronic conductivity 

determined for the NMC532 cathode. 
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Figure 3.4. | Potential vs current experimental data and fitting of the electronic 

conductivity of NMC532. 

 

3.1.5 EIS MEASUREMENTS 

The EIS experiments were conducted using an Autolab PGSTAT302N potentiostat 

for an NMC532/Li metal half-cell. In a typical procedure, the Li-ion half-cell was pulsed 

12 times with a current of C/20 for 2 hours. After each pulse, the cell was given time to 

reach electrochemical equilibrium (i.e. until open circuit voltage (OCV) reach (

1
dOCV

dt

V

s



) before an EIS measurement was taken. EIS was conducted at a frequency 

range of 20kHz – 0.01Hz with a sinusoidal voltage amplitude of 10mV in a Tenney T10RS 

climate control chamber set to 25oC. 

3.1.6 GALVANOSTATIC INTERMITTENT TITRATION TECHNIQUE (GITT) 

GITT measurements were performed on the assembled coin cell (NMC532/Li 

metal half-cells) during both charging and discharging cycles to determine the OCV of the 

NMC532 cathode. The cells were conditioned for 2 cycles with constant current charge-

discharge at C/10. Then 25 intermittent pulses were applied at C/20 for 2 hours until the 
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upper or lower voltage bound was met. The rest period was over 30 minutes to ensure 

equilibrium conditions are reached between adjacent pulses.  

 

Table 3.1 | Perturbation form of the Lithium-Ion battery P2D model 

 

 

Model Equations 

Solution phase 

diffusion 
ε1𝑖ωΔ𝑐1(𝑥, ω) = 𝐷1, eff  

∂

∂𝑥
(

∂Δ𝑐1(𝑥,ω)

∂𝑥
) + 𝑎(1 − 𝑡+)

Δ𝑗s(𝑥,ω)

𝐹
;𝐷1,eff = 𝐷1, bulk ε1

1.5 

   
𝜕Δ𝑐1(𝑥, 𝜔)

𝜕𝑥
|

𝑥=0

= 0 ;
𝜕Δ𝑐1(𝑥, 𝜔)

𝜕𝑥
|

𝑥=𝑙𝑛+𝑙2+𝑙𝑝

= 0 

Δ𝑗s(𝑥, 𝜔) = 0 in the separator region (0 < 𝑥 < 𝑙𝑠) 

Charge 

conservation in the 

electrolyte 

𝜕

𝜕𝑥
(𝜅eff 

𝜕Δ𝜙(𝑥, 𝜔)

𝜕𝑥
− 𝜅d

𝜕Δ𝑐1(𝑥, 𝜔)

𝜕𝑥
) + 𝑎Δ𝑗s(𝑥, 𝜔) = 0 

Δ𝑗s(𝑥, 𝜔) = 0 for 0 < 𝑥 < 𝑙s 

𝜕Δ𝜙1(𝑥, 𝜔)

𝜕𝑥
|

𝑥=0

= 0     ;  
𝜕Δ𝜙1(𝑥, 𝜔)

𝜕𝑥
|

𝑥=𝑙𝑛+𝑙1+𝑙𝑝

= 0 

𝐾eff = 𝜅bulk 𝜀1
1.5      ;         𝜅d = 𝜅eff

2𝑅𝑇

𝐹𝑐1

(1 − 𝑡+) (1 +
𝑑 ln 𝑓±

𝑑 ln 𝑐1

) 

 

Charge 

conservation in 

solid phase 

𝜕

𝜕𝑥
(𝜎eff

𝜕Δ𝜙s(𝑥, 𝜔)

𝜕𝑥
) − 𝑎Δ𝑗s(𝑥, 𝜔) = 0                    𝜎eff = 𝜎𝜀s

1.5 

Δ𝜙s(𝑥, 𝜔)|𝑥=0 = 0 
𝜕Δ𝜙s(𝑥, 𝜔)

𝜕𝑥
|

𝑥=𝑙n

= 0 
𝜕Δ𝜙s(𝑥, 𝜔)

𝜕𝑥
|

𝑥=𝑙n+𝑙s

= 0  

Not applied in the separator region (0 < 𝑥 < 𝑙s) 

Butler-Volmer 

equation for 

electrochemical 

reactions 

Δ𝑗𝑠(𝑥, 𝜔) = 𝑗0 [(
0.5𝐹

𝑅𝑇
+

0.5𝐹

𝑅𝑇
) Δ𝜂(𝑥, 𝜔)]

+ i𝜔Δ𝜂(𝑥, 𝜔)𝐶𝑑𝑙   Not applied for 0 < 𝑥 < 𝑙s 

Δ𝜂(𝑥, 𝜔) = Δ𝜙𝑠(𝑥, 𝜔) − Δ𝜙1(𝑥, 𝜔) − Δ𝑈(𝑥, 𝜔) − Δ𝑗𝑠(𝑥, 𝜔)𝑅𝑓𝑖𝑙𝑚 

𝑗0 = 𝐴𝑘𝐹𝑘r𝑐1
0.5(𝑐s,max − 𝑐s|𝑟=𝑅𝑠

)
0.5

(𝑐s|𝑟=𝑅𝑠
)

0.5
  

Δ𝑈(𝑥, 𝜔) =
𝑑𝑈

𝑑𝜃
Δ𝜃(𝑥, 𝜔) 

Solid-phase 

diffusion 
𝑖𝜔Δ𝑐𝑠(𝑟, 𝜔) = 𝐴𝐷𝐷𝑠

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕[Δ𝑐𝑠(𝑟, 𝜔)]

𝜕𝑟
) 

− 𝐷s

𝜕Δ𝑐𝑠(𝑟, 𝜔)

𝜕𝑟
|

𝑟=0

= 0 − 𝐷s

𝜕Δ𝑐𝑠(𝑟, 𝜔)

𝜕𝑟
|

𝑟=𝑅s

=
Δ𝑗s(𝑟, 𝜔)

𝐹
Δ𝜃∗

=
Δ𝑐s|𝑟−𝑅𝑠

𝑐s,𝑚𝑎𝑥

 Not applied in the separator region (0 < 𝑥

< 𝑙s) 

 

Impedance 𝑍 =
Δ𝑉

Δ𝐼(𝑥, 𝜔)
=

Δ𝑉

𝜎eff 
𝜕Δ𝜙𝑠(𝑥, 𝜔)

𝜕𝑥
|

𝑥=𝑙𝑠+𝑙𝑝
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3.2 PERTURBATION FORM OF PSEUDO-2-DIMENSIONAL MODEL 

A Physics-based P2D Impedance model including Equation 1.23 and Equation 

1.32, as shown in Table 3.1, was built to simulate the impedance spectra. A periodic 10mV 

voltage perturbation with a small stimulus is applied to the system at the steady-state. The 

corresponding current response is then calculated to yield the impedance Z. Then, a 

nonlinear regression (described in the next section) was carried out using MATLAB 

LSQNONLIN to fit the EIS spectra with the model by varying k and D, as well as 
γ𝑖

γ𝑖,𝑇𝑆
. 

3.3 PARAMETER ESTIMATION 

A nonlinear regression algorithm was utilized to estimate the parameters. Here, the 

sum of squares (Objective function, Obj), Equation 1.33, was minimized. 

𝑂𝑏𝑗 = ∑ [√(
𝑍𝑚,𝑛

′ −𝑍𝑒𝑥𝑝,𝑛
′

𝑍exp,𝑛
′ )

2

+ √(
𝑍𝑚,𝑛

′′ −𝑍𝑒𝑥𝑝,𝑛
′′

𝑍𝑒𝑥𝑝,𝑛
′′ )

2

]𝑁
𝑛=1      

Equation 3.1 

In Equation 3.1, Z’ and Z’’ represent the real and imaginary parts of the 

impedance; the subscripts m and exp stand for the model and experiment, respectively; N 

is the number of impedance data points, corresponding to the number of frequencies (ω). 

The uncertainty of the obtained parameters was obtained by a numerical Jacobian matrix 

with the finite difference method:  

𝐽𝑖𝑗 =
Δ𝑂𝑏𝑗𝑖

Δ𝑥𝑗
                                                                                                Equation 3.2 

The standard deviation was related to the residuals and Jacobian matrix by: 

σ = √(𝑦𝑚−𝑦𝑒𝑥𝑝)
′
(𝑦𝑚−𝑦𝑒𝑥𝑝)

𝑛−𝑘
𝑑𝑖𝑎𝑔((𝐽′𝐽)−1)                                                      

Equation 3.3 

Moreover, according to Student’s t inverse cumulative distribution function, 
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𝑝 = 𝐹( 𝑡 ∣ 𝑣 ) = ∫
Γ(

𝑣+1

2
)

Γ(
𝑣

2
)

𝑡

−∞

1

√𝑣π

1

(1+
𝑡2

𝑣
)

𝑣+1
2

𝑑𝑡                                                                                                                                                                                                                   
Equation 3.4 

where p is the desired probability and lies on the interval [0 1]; t values fall into 95% 

probability. The confidence interval (CI) of a parameter was determined by:  

𝐶 𝐼 = 𝑥 ± 𝑡 ⋅ σ Equation 3-5 

3.4 EIS MODEL PARAMETERS 

As discussed, the parameters used in the Physics-based impedance model are listed 

in Table 3.2. Most of the parameters used in the model were determined from the 

experimental measurements. A few were taken from the literature and the remaining six 

were estimated by the non-linear regression described above. In the optimization process, 

initial constants were taken from the literature, as shown in Table 3.2. 

 

Table 3.2 | Parameters used in the EIS Model. 

Variable Value Source 

Initial electrolyte concentration ce,0 2000 [mol/m3] 69 

Maximum Li capacity Cspmax 48230 [mol/m3] 50 

Radius of particle Rsp 3.16 um SEM 

Thickness of components Ls/Ln/Lp 20/50.27/68.77 um SEM 

Porosity of electrode ɛls 0.67 MIP 

Porosity of electrode ɛlp 0.42 MIP 

Volume fraction of active material 

ɛsp 
0.7 MIP 

Li-ion diffusivity Dspref 8.5966e-15[m2/s]*AD,cathode PBM 

Interface reaction rate ienref 496.11[A/m2]*Ak,anode PBM 

Interface reaction rate iepref 2.24[A/m2]* Ak,cathode PBM 
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Interface capacitance Cdln 0.2393[F/m2]* Ac,cathode PBM 

Interface capacitance Cdlp 0.2393[F/m2]* Ac,anode PBM 

Contact resistance Rcur 0.0013[Ωm2]* AR PBM 

Electronic conductivity σpos 8.27·10-3[S/m] 
Four-terminal 

LSV 

Maximum SOC SoCmax,pos 0.997 GITT 

Minimum SOC SoCmin,pos 0.305 GITT 

Open circuit voltage OCVpos Variable of xpos GITT 

Li-ion conductivity in electrolyte κl Variable of ce, 
67 

 

In total, there are six pre-factors in the optimization procedures and they are 

associated with six parameters: Ak,cathode (the reaction rate at the cathode/electrolyte 

interface), Ak,anode (the reaction rate at the Li-metal foil/electrolyte interface), Ac,cathode (the 

capacitance at the cathode/electrolyte interface, Ac,anode (the capacitance at the Li-metal 

foil/electrolyte interface), AD,cathode (the Li-ion diffusivity in the cathode particles), and AR 

(the current collector/electrode contact resistance).  

 

 

Figure 3.5. | Model and Experimental data comparison in (a) complex plan (Nyquist) plot, 

(b) magnitude of impedance (|Z|), and (c) phase angle (θ). Reproduced with permission 

from IOP Publishing.98 
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As shown in Figure 3.5,  nine impedance spectra were collected, each tested at a 

different cathode xLi.  The xLi are listed in Table 3.3. Good agreement between the 

experimental data (symbols) and model predictions (lines) was reached for all the 

impedance spectra. Generally, each of the impedance spectra contained two overlapping 

arcs and a long Li-ion diffusion tail. The intermediate frequency peak is associated with 

Butler-Volmer reactions at NMC532/electrolyte interface; the high-frequency peak is 

related to the reaction at the Li-metal/electrolyte interface. 

Table 3.3 | Optimized parameters 

Curve No. xLi OCV Ak AD 

1 0.96 3.63 3.63 0.01 

2 0.89 3.68 6.97 0.04 

3 0.81 3.72 9.30 0.10 

4 0.74 3.75 10.98 0.19 

5 0.66 3.79 13.23 1.15 

6 0.59 3.86 15.05 4.92 

7 0.52 3.96 17.94 12.39 

8 0.47 4.06 20.42 17.49 

9 0.40 4.18 19.79 22.65 

 

Table 3.3 also lists the optimized Ak,cathode and AD,cathode to make the predictions in 

Figure 3.5. Figure 3.6 shows the model prediction with a 95% model Confidence Interval 

(CI) using the optimized parameters. The calculation of the model CI was detailed in the 

Parameter Estimation Section. The model predictions fall between the 95% confidence 

interval for all nine curves. The sensitivity of different portions of the curves to the 

parameters varies with OCV. 
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Figure 3.6. | Comparing the Nyquist plots from model and experimental data with 95% 

Confidence Intervals under different xLi of the cathode: a) xLi =0.96, b) xLi =0.89, c) xLi 

=0.81, d) xLi =0.74, e) xLi =0.66, f) xLi =0.59, g) xLi =0.52, h) xLi =0.47, and i) xLi =0.40. 

Reproduced with permission from IOP Publishing.98 

 

 

Figure 3.7. | Optimized Parameters as a function of OCV for (a-f) Ak,cathode, Ak,anode, 

Ac,cathode, Ac,anode, AD,cathode, and AR. Reproduced with permission from IOP Publishing.98 

a b c 

d e f 
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Figure 3.7 shows the correlation between xLi and the optimized parameters. For 

Ak,cathode and Ak,anode, the uncertainties in the parameters are higher at higher OCVs. While 

both pre-factors increases vs OCV, the magnitude of Ak,anode is more than one order of 

magnitude lower than Ak,cathode. Besides, combining with the baseline parameters in Table 

3.2, the order of magnitude of exchange current density in both electrodes are similar. For 

Ac,cathode and Ac,anode, the capacitance at the NMC/electrolyte interface first decreases with 

the OCV, and then reaches a plateau.  The uncertainty in Ac,cathode is almost 50%; the 

magnitude of Ac,anode (high-frequency arc) is around one order of magnitude smaller than 

Ac,cathode; Ac,anode increases first and then reaches a relatively stable value. For AD,cathode, the 

diffusion coefficient in NMC particles increases nonlinearly with the OCV.  However, the 

uncertainty in AD,cathode can be 100%, especially at higher OCV. For AR, the current 

collector/electrode interfacial resistance does not appreciably vary, though it does decrease 

with the OCV. The sensitivity of each of the estimated parameters is shown in Figure 3.8. 

The sensitivity of AD,cathode varies significantly in the OCV range.  

 

 

Figure 3.8. | Sensitivity of each parameter. Reproduced with permission from IOP 

Publishing.98 
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Therefore, there might be relatively larger uncertainty in this parameter. The 

uncertainty of the parameters was obtained by the numerical Jacobian matrix with the finite 

difference method, as given in the Parameter Estimation Section. Processing the data AD 

and Ak in Table 3.3 by dividing their counterparts at the lowest xLi (0.4, curve 9), their 

relative values can be obtained as A𝐷 =
γ𝑖

γ𝑖,0.4
(1 +

∂ ln γ𝑖

∂ ln 𝑐𝑖
) / (1 +

∂ ln γ𝑖,0.4

∂ ln 0.4
)  and A𝑘 =

(
γ𝑖

γ0.4
)

α

, which are plotted versus xLi in Figure 3.9. Also, D varies over 3 orders of 

magnitude, and k changes by 1-2 orders of magnitude. Both pre-factors were fit by a 

lognormal function A = 𝑦0 +
𝐵

√2𝜋𝜔𝑥
𝑒

(−(ln(
𝑥

𝑥𝑐
)

2
/2𝜔2))

with a Levenberg-Marquardt iteration 

algorithm. The parameters are given in Table 3.4.  

 

Table 3.4 | Parameters used in Fitting of A in Figure 3.9 

Pre-factor y0 B w xc 

AD  -0.0085 0.22746 0.21916 0.42365 

Ak  -0.05953 0.68552 0.53641 0.54787 

 

 

Figure 3.9. | Relative pre-factors for k and D for the cathode. Reproduced with permission 

from IOP Publishing.98 
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3.5 THERMODYNAMIC NONIDEALITY 

As discussed in Section 1.6, the transport and kinetic nonideality (diffusion or 

reaction) of a Li-ion electrode is closely correlated to its thermodynamic non-ideality 

(chemical potential). The variation of the latter can be described by the open circuit voltage 

of the electrode mathematically. For an electrode reaction (where M = Ni, Mn, Co, or 

mixed), the intercalation/deintercalation energy of Li-ion can be calculated as, 

(𝑥2 − 𝑥1)(Li+ + e-) + Lix1
𝑀*O2 → Lix2

𝑀 ∗ O2 Equation 3.6 

The Li-ion content, xLi, was varied between 0.4 and 1 according to the experimental 

section. The thermodynamic equilibrium of the system can be expressed as: 

μ𝐿𝑖𝑥2𝑀∗𝑂2
− (𝑥2 − 𝑥1)μ𝐿𝑖 − μ𝐿𝑖𝑥1𝑀∗𝑂2

= −𝑒(𝑥2 − 𝑥1)𝐸    Equation 3.7 

where E is the open circuit voltage at a given xLi; e is the magnitude of the elementary 

electrical charge of an electron with a value 1.6×10-19C; Li , the chemical potential of 

Lithium metal is not a function of xLi and therefore equals 0
Li . Plugging Equation 1.17 

and Equation 1.18 into Equation 3.7, and with further derivation, the following 

relationship can be obtained: 

𝑑 ln γ

𝑑𝑥𝐿𝑖
= −

𝑒𝐸𝑥𝐿𝑖
− μ𝐿𝑖

0

𝑘𝐵𝑇
−

1

𝑥𝐿𝑖
 

Equation 3.8 

In Equation 3.8, E versus xLi can be obtained by GITT measurements, as shown in 

Figure 3.11; μ𝐿𝑖
0 = −𝑒𝐸𝐿𝑖 = 3.04[eV] can be determined by the chemical potential of Li-

metal versus Standard Hydrogen electrode reported in the literature. With the two terms on 

the right-hand side of Equation 3.8 known, the first-order derivative of the logarithm of 

the activity coefficient towards xLi, 
𝑑 ln γ

𝑑𝑥𝐿𝑖
, can be calculated. If the solid electrode particles 
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are dilute solutions, the activity coefficient  equals 1, so 
𝑑 ln γ

𝑑𝑥𝐿𝑖
should be 0; on the contrary, 

if nonideal effects exist in the particles during charge/discharge cycles, 
𝑑 ln γ

𝑑𝑥𝐿𝑖
 will be a 

function of xLi.  Based on the available experimental data, 
𝑑 ln γ

𝑑𝑥𝐿𝑖
 is contrived in the following 

plot, shown in Figure 3.10.  

 

 

Figure 3.10. |  
𝑑 ln 𝛾

𝑑𝑥𝐿𝑖
  as a function of xLi obtained from Equation 3.8. Reproduced with 

permission from IOP Publishing.98 

 

In Figure 3.10, obviously, 
𝑑 ln γ

𝑑𝑥𝐿𝑖
 is a strong function of xLi, and γ is cannot be a 

constant. Such a correlation is consistent with the nonlinear profiles of pre-factors A shown 

in Figure 3.9. It also illustrates that the variation in the activity coefficient contributes to a 

significant portion of the chemical potential change −
𝑒𝐸𝑥𝐿𝑖

−μ𝐿𝑖
0

𝑘𝐵𝑇
, whereas the change of 

chemical potential that resulted from xLi variation can almost be neglected. Such 

predictions further confirm that significant thermodynamic nonideality exists in the solid 
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cathode material during charge/discharge cycles and it will lead to substantial transport and 

kinetic nonideality in the electrode material. 

 

Figure 3.11. | GITT measurement of NMC532 half-cell during the charging/discharging 

cycles Reproduced with permission from IOP Publishing.98 

 

 

3.6 IMPORTANCE OF INTEGRATING NONIDEALITY INTO PHYSICS-BASED 

MODELS 

Li-ion batteries are not only energy conversion devices but also a proxy to store 

energy in the form of chemical potential in electrodes. For such energy storage materials, 

both the transport and kinetic properties of electrodes will affect the overall cell 

performance. Especially, when the Li-ion concentration becomes close to 1, the diffusivity 

and reaction kinetics reduces exponentially with respect to xLi. Therefore, significant 

overpotential is likely to occur, which is the root of degradation from undesirable parasitic 

reactions. As shown in Figure 3.12, there are three discharge profiles predicted by models 

with different pre-factors. For the black curve, A𝐷 and A𝑘 are both 1. In other words, the 

diffusivity D and reaction kinetics constant k are assumed to be the same as those with 

xLi=0.4. For the green curve, it is predicted by the model with functions A𝐷(𝑥𝐿𝑖) and 
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A𝑘(𝑥𝐿𝑖) shown in Figure 3.9. For the red curve, A𝐷 and A𝑘  are optimized to be 0.06 and 

1 to regress the best fit with the green curve. There are no equivalent constants for A𝐷 and 

A𝑘, which can lead to a same discharge profile as that with functions A𝐷(𝑥𝐿𝑖) and A𝑘(𝑥𝐿𝑖). 

On the contrary, the discharge profile with the pre-factors in Figure 3.12 deviates 

substantially from that obtained with constant pre-factors. Adjusting the two constant pre-

factors does not necessarily provide the same discharge profile.  

  

 

Figure 3.12. | Comparison between different pre-factors: (a) discharge profiles 

(Current=1C); (b) overpotentials; (c) xLi concentration profiles in active particles at the 

end of discharge. Reproduced with permission from IOP Publishing.98 
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In practice, additional parameters will be augmented to fit the experimental curve, 

so the obtained parameters do not represent the true properties of the cell. Only functions 

A𝐷(𝑥𝐿𝑖) and A𝑘(𝑥𝐿𝑖) can reveal the true physical properties of the cell and equivalent 

constants of them could lead to significant deviations in the electrochemical performance 

predictions of the batteries. Figure 3.12b shows the overpotential profiles with different k 

and D. The green (AD and Ak are constants) and red (AD=0.06 and Ak=1) curves reach 

higher overpotentials much earlier than the black curve (AD=1 and Ak=1) due to the 

different diffusivity into the cathode particles. As shown in Figure 3.12c, the Li-ion 

concentration gradient at the end of discharge is much higher for the green curve than that 

for the black curve. Therefore, the large diffusion resistance will lead to a significant loss 

in capacity, which is the major reason for the shorter discharge time shown in Figure 3.12a. 

3.7 SUMMARY 

New pre-factors were derived that accurately describe the diffusivity and interfacial 

reaction rate constant of a Li-ion battery cathode under the framework of concentrated 

solution theory. To do this, electrochemical impedance spectra were fit by a physics-based 

model through nonlinear optimization. The optimized pre-factors show significant 

variation as a function of the SOC. Therefore, large nonideality exists in the solid Li-ion 

active materials during the intercalation/deintercalation process. In the application of BMS, 

especially for degradation prognosis through parameter estimation, it is important to 

include such nonlinear pre-factors to achieve high fidelity prediction. 

In summary, the work presented in this chapter is a corollary to Chapter 2, which 

for recollection, applied experimental parameters from 50Ah full-cells to a reduced-order 

Lumped model and prioritized rapid computation for BMS applications. The speed, 
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fidelity, and limitations can be seen in Table 3.5, which compares various model 

complexities (e.g. standard pseudo-2D (P2D), pseudo-2D reduced order model (P2D 

ROM), single particle model (SPM), Lumped model, and Lumped reduced-order model). 

In essence, Chapter 2 showed the successful implementation of the State Space approach 

to transform the PDEs in the Lumped model for order reduction and as a result, decreased 

the computational time for 1 charge/discharge cycle by 50%. The Lumped reduced-order 

model in Chapter 2 shines when computation speed, processing power, and parameter 

extraction is the limiting factor (i.e. standard BMS), but the modified P2D model in this 

Chapter explains the system at a much higher level of fidelity and is capable of capturing 

non-ideality and describing the loss mechanisms on an electrode-level.   

 

Table 3.5 | Advantages and Disadvantages of different model techniques  

MODEL* P2D 53 P2D ROM 64 SPM 71 Lumped 74 TLM  

# of parameters  ~40 37 ~22 4 4 

Calculation time  

(single cycle) ** 
 

~73 s ~5 s ~6 s ~2 s <1 s 

Model 

complexity 

Moderate-

to-high 
High Moderate Easy Easy 

Ability to model 

high C-Rates 
Yes Yes 

Works well 

for 

moderate-

to-low rates 

(<1.5C) 

Works well 

for low rates 

(<1C), but 

with fitting, it 

can go to 

>1C  

Works well 

for low rates 

(<1C), but 

with fitting, 

it can go to 

>1C 

 

Current 

distribution 
Yes Yes No No No 

Need for 

measurements/ 

experimental 

difficulty 

Yes/ 

Complex  

Yes/ 

Complex 

Yes/ 

Moderate 

Minimal 

(Discharge 

profiles and 

OCV is all)  

No 

Needs parameter 

fitting 
Yes Yes Yes Yes Yes 

*The other models (P2D, P2D ROM, SPM and Lumped) were developed using other experimental measurements that were not presented 
in this section. 

**The calculations were performed using COMSOL Multiphysics 5.4 on a Precision WorkStation T7500 with Intel® Xenon® 12-core 
CP, 48Gb of RAM and NVIDIA Quadro 4000 video card.   
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CHAPTER 4: EXTREME OPERATION OF LI-ION BATTERIES 

The experiments and models in Chapters 2 and 3 described commercial LIBs under 

stable operating conditions, but nowadays LIBs are widely-integrated into advanced 

applications (e.g. satellites, electric cars), which can be subjected to extreme conditions. 

This chapter was created out of urgency and deals with the effect of low-temperature 

operation of commercial LIBs, and seeks to answer questions about how rapid degradation 

occurs and what are the root-cause and effects from a multi-scale perspective (e.g. 

chemistry-level, particle-level, electrode-level, and cell-level). The U.S. Advanced Battery 

Consortium (USABC) has established targets for deployed LIB packs, including 1) stable 

operating temperatures from -40°C to +66°C, 2) lifespan of 15 years, and 3) 350 mile 

drivable distance per full charge.99 For next-generation LIBs to achieve longer driving 

ranges, it is imperative to extend the reversible energy density of operating cells, but this 

typically comes with a tradeoff in safety and pack cycle life. The safe operation of high 

energy density LIBs is a prerequisite of government regulations and it requires the 

mitigation of thermal runaway. Extreme conditions and discrepancies in Li-ion battery 

operating conditions (i.e. oscillations in temperatures, current, and depth-of-discharge)4,100–

102 and chemistry (i.e. additive engineering, fluorination, electrolyte, 

anodes/cathodes)42,103–109 have led to unpredictable variations in the onset for catastrophic 

cell-failure (i.e. rapid performance degradation, abrupt cell death, thermal runaway)110–114. 

In particular, electrified transportation (e.g. electric cars, electric trucks, aircraft)5,115–117 are 
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on the precipice of extreme operating conditions, which include repetitive fast-charge/fast-

discharge in a matter of seconds (i.e. effect of acceleration and regenerative braking in 

Figure 4.1)118–120 and possible exposure to extreme temperatures on Earth ranging from -

29oC (e.g. mountainous regions, troposphere for commercial airplanes) to +52oC (e.g. 

desert regions, hotter areas)99 or abusive cold-mission space temperatures down to -20oC 

to -40oC with thermal regulators (e.g. exploration rovers, spacecraft).121 Also, thermal 

expansion and contraction due to temperature oscillations can lead to thermal shock and 

mechanical failures, including active material delamination and current collector cracking. 

The state-of-charge (SOC) of both the anode and cathode drifts due to parasitic Li-losses 

either from kinetically governed solid-electrolyte interphase (SEI) formation at elevated 

temperatures or thermodynamically forced irreversible Li deposition followed by SEI 

passivation on the reactive Li surface at low temperatures or high C-rates. 

 

 

Figure 4.1. | New European Driving Cycle (NEDC) speed correlations to current for a 

given 1200s experiment. 
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4.1 FAILURE MODES 

High-rate charging is highly desirable – especially in the electric vehicle sector that 

is looking to compete with the timescale for refueling both gasoline and H2-fueled cars (~5 

min, a battery charging rate ~10 C).  During rapid charging of existing Li-ion batteries 

(LIBs), either from fast-charging stations or regenerative braking, over polarization at the 

anode drives Li deposition and dendrite formation, which can cause internal short-

circuiting leading to thermal runaway (TR) and catastrophic failure of the battery pack.5,122 

Wide temperature operation for Li-ion batteries is also desirable – especially for electric 

vehicles that operate in regional locations that are colder or hotter than usual.  

Generally, TR initiates through a series of exothermic runaway reactions that build 

upon each other (i.e. resulting in a cyclic pathway: heat enables reaction, reaction generates 

heat) and can result in both cell-temperatures that far-exceed 600oC and complete release 

of hot, toxic, and combustible gases (e.g. H2, O2, CO, CO2, CH4, C2H4, C2H6, HF).123,124 

Generally, the electrolyte consisting of lithium hexafluorophosphate (LiPF6) dissolved in 

ethylene carbonate (EC) and dimethyl carbonate (DMC) are employed and also have 

combustible characteristics that can fuel the propagating flame (Figure 4.2). Furthermore, 

hazardous gases like carbon monoxide (CO) are toxic and preferentially attacks 

hemoglobin to form the deactivated oxygen carrier carboxyhemoglobin, resulting in tissue 

hypoxia (acute CO toxicity = 1000 ppm).125  

The evolution of other toxic fluorinated-gases (e.g. HF, POF3, PF5) is primarily the 

direct result of the hydrolysis reaction of LiPF6, which under USA’s Protective Action 

Criteria (PAC), gaseous HF is incredibly toxic and has irreversible/serious health effects 

at 24 ppm, poses life-threatening risks at 44 ppm,126 and displays high corrosivity. The 



www.manaraa.com

78 

 

resulting fire, gas emissions, and/or explosion due to thermal runaway are spotlight hazards 

that result in the catastrophic failure of the entire application system.127 Real-world 

implications have severe consequences such as events involving thermal damage of Li-ion 

batteries on the Boeing 787 Dreamliner128 or the Samsung Galaxy Note 7 where welding 

burrs or design flaw and deflected electrodes can result in high local mechanical and/or 

thermal stress that eventually compromises the separator and causes thermal runaway.129 

 

 

Figure 4.2 | Schematic of low-temperature Li0 plating and gas generation over repetitive 

cycling and subsequent over-pressurized venting after room-temperature recovery. 

Reproduced with permission from American Chemical Society.130 

 

4.2 LITHIUM PLATING MECHANISM AND RAPID BATTERY DEGRADATION OF 

COMMERCIAL LI-ION BATTERIES UNDER LOW TEMPERATURE 

Fast charge and/or low-temperature operation of Li-ion batteries at a relatively high 

state of charge (SOC), can result in anode overpotentials that well-exceed the Li/Li+ redox 

couple, resulting in Li0 deposition, which is widely debated in the literature to be a trigger 
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for thermal runaway. Therefore, an extensive suite of characterization techniques was used 

to study how rapid battery degradation occurs due to severe Li0 plating. First, the 

electrocrystallization of Li0 onto a nucleation seed depends largely on the crystallization 

surface and the facet orientation of Li0 seeds. Determining the facet where Li0 

preferentially deposits is extremely difficult due to poor interaction with X-ray sources and 

high reactivity in many testing environments. Steiger131 was able to deposit well-faceted 

Li0 particles potentiostatically at -0.1V vs Li/Li+ for 100s, and found due to interfacial 

interaction of Li0-SEI interface, that Li0 deposition preferentially occurs on the lowest 

interfacial energy plane, {110}. It should be noted that the electrolyte, additives, and SEI 

composition will create inherent differences in the electrodeposition process. Steiger also 

found whisker formation after a set termination-size of the particle, and then homoepitaxial 

elongation of the same facet occurs to form whiskers. The preferential growth of 

electrodeposits is also compounded with non-homogenous current densities, which causes 

non-uniform Li0 deposition. The growth of high surface area and high reactivity Li0 

electrodeposits, results in further electrolyte reduction, depletion of Li+, and uncontrolled 

growth of a resistive SEI layer. Also, Li0 dendrites can grow within the pores of the 

polymeric separator that result in internal short circuits and aggressive thermal runaway.  

4.3 EXPERIMENTAL 

4.3.1 EXTREME BATTERY OPERATION AND ELECTROCHEMICAL TESTING  

Low-temperature gas generation experiments were conducted on as-received 50Ah 

NMC532/graphite large-format prismatic cells with two jellyrolls inside. The cycle 

performance of these cells is evaluated by low-temperature constant current-constant 

potential (CC-CP) cycling and 1000Hz AC impedance inside a Tenney T6S-1 temperature 



www.manaraa.com

80 

 

control chamber (T = -29oC or 0oC) with an Arbin MSTAT battery cycler. Each 

NMC532/graphite large-format prismatic cell was equipped with three K-type 

thermocouples (thermocouple 1: terminal, thermocouple 2: in-between clamps and cell, 

thermocouple 3: ambient). Both -29oC and 0oC temperature experiments were carried out 

on cells that were cycled at 0.3C (15A) from 2.8-4.25V with a CP tapering constraint of 

<0.05C (2.5A). 

To understand the effects of low-temperature cycling on the structure of the 

electrodes and cells, both tested and fresh cells were disassembled. Cell teardown was done 

at complete discharge to the lower voltage bound (2.8 V) and relaxed at open circuit 

potential (OCP) for 24 hours to reach electrochemical equilibrium. These fully discharged 

cells were securely insulated with electrical tape and transferred inside an argon-filled (Ar, 

UHP Praxair) MBraun Labmaster SP glovebox (H2O and O2 levels < 0.1 ppm). Two 

parallel breaching lines separated by 1 mm were etched 2 mm from the top and bottom of 

the casing with a scalpel and acted as guides for cell opening. Next, a hydraulic cell opener 

was used to remove the casing. Upon complete removal of the cell casing, the tabs and 

busbar were mechanically separated from the jellyrolls and used for further electrochemical 

and physical characterization. Each jellyroll was examined carefully to distinguish flat vs. 

curved locations, edge vs. center, and tab proximity. 

4.3.2 COIN-CELL TESTING 

From some of the electrodes, 1.5 cm2 disks (cathode: NMC532, anode: graphite) 

were cut from the jellyrolls with a Precision Disc Cutter (MTI Corporation). Each disk was 

placed into its own glass vial (labeled to indicate anode vs. cathode, location on the 

jellyroll, etc.) containing dimethyl carbonate (DMC, 99.9% purity, Sigma Aldrich Fine 
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Chemicals Biosciences) for 30 minutes and dried under vacuum for 30 minutes. Some of 

the disks were transferred to an Ar-filled Kratos AXIS Ultra multipurpose transfer vessel 

and removed from the glovebox for characterization. Other disks were used to assemble a 

three-electrode split cell (MTI Corporation, equipped with a pressure gauge). To do this, 

the active material was removed from one side of the current collector foils by exposing 

the electrode to N-methyl-pyrrolidone (NMP, 99.5% Extra Dry, Acros). The reference 

electrode was a lithium metal (Li, 99.9%, Alfa Aesar) ring (outer diameter = 24 mm, inner 

diameter =15 mm). The electrolyte was 1.2M lithium hexafluorophosphate (LiPF6, 99.9%, 

TCl America) salt dissolved in ethylene carbonate (EC, 99%, ACROS Organics) and 

dimethyl carbonate (DMC, 99.9% purity, Sigma Aldrich Fine Chemicals Biosciences) at 

3:7 EC: DMC mass ratio. The three-electrode cells were tested at both -29oC and 0oC at a 

rate equivalent to 0.3C from 2.8-4.25V with a CP tapering current equivalent to <0.05C. 

The anode potential was measured vs Li/Li+ reference electrode in the three-electrode 

setup.  

4.3.3 PHYSICAL CHARACTERIZATION 

An extensive array of physical characterization tools was also used to understand 

cell behavior.  Energy-dispersive X-ray spectroscopy (EDS) and scanning electron 

microscopy (SEM) were conducted with a Zeiss Ultraplus Field Emission Scanning 

Electron Microscope (FE-SEM). X-ray photoelectron spectroscopy (XPS) wide scan and 

high-resolution measurements were performed on a Kratos AXIS Ultra DLD XPS system. 

The cathode composition and metal deposition (e.g. Li, Ni, Mn, Co) on the anode electrode 

were evaluated by inductively coupled plasma optical emission spectroscopy (ICP-OES) 

using a Perkin-Elmer 2100DV Spectrometer. To analyze the gaseous species in the cells 
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after cycling, the gas products were first collected in a syringe and fed to a customized, 

multi-detector Agilent 7890B-5977B GC-MSD instrument. Carbon dioxide and carbon 

monoxide were detected with a flame ionization detector (FID) and ethylene, methane, 

hydrogen, nitrogen, and oxygen were detected with a thermal conductivity detector (TCD). 

The GC response was calibrated by standard gases before the analysis. Multi-location 

liquid nitrogen (N2) Raman Spectroscopy was conducted with a 633nm laser source set to 

0.1% intensity, 1025m hole size, 300m width, grating 950. Raman samples were first 

treated with liquid nitrogen(N2) to prevent material degradation due to the laser source. 

The calibration of the spectrometer was done before the samples with a  =520.7cm-1 silica 

standard at a tolerance of  1.0cm-1. 

4.4 RESULTS AND DISCUSSION 

4.4.1 ELECTROCHEMICAL-THERMAL RESPONSE UNDER EXTREME OPERATION (THERMAL 

RUNAWAY AND OVER-PRESSURIZATION) 

Low temperature (LT) cycling experiments on 50Ah NMC532/graphite large 

format cells were found to undergo two primary life-limiting processes: 1) non-thermal 

runaway venting process (i.e. over-pressurization) or 2) thermal runaway venting with 

ejecta products (e.g. Cu/Al shreds, carbon, cathode material) after room temperature 

recovery from repetitive cycling at T = -29oC (thermocouple temperature) at a current of 

15A (C-Rate = 0.3C). As shown in Figure 4.3a, the characteristic average discharge 

capacity (over 5 cycles) was 50.85 Ah. Transitioning from room temperature to low 

temperature (LT, T = -29oC) immediately caused the discharge capacity to drop to 36.72 

Ah (Cycle 6), a loss of 28%, as expected.  
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Figure 4.3. | Low temperature electrochemical and thermal analysis on the effects of Li0 

plating and gas generation. (a) Cycle performance and coulombic efficiency during 

temperature transitions (RT→ -29oC →RT), (b) charge-discharge profile highlighting the 

temperature transitions and charge/discharge currents (i.e. characteristic no plating curve 

at 2.5 A and other plating curves at 15A), (c) internal resistance measured by AC-1000Hz 

method and relaxation voltage before discharge, (d) Qmax normalized differential capacity 

analysis to decouple the no Li+ stripping characteristic curve and identify Li+ stripping 

peaks79 under the more extreme charge/discharge current (15A), and (e) temperature 

recovery back to RT and cycling results catastrophic venting that causes the cell to 

internally shutdown. Reproduced with permission from American Chemical Society.130 
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Over 390 cycles of low-temperature CC-CP cycling, the final discharge capacity 

was found to be 3.96Ah, only 11% of the original low-temperature capacity. The 

coulombic efficiency at 25oC was near 1.00, but significantly dropped initially, and was 

only 0.988 over the first 100 cycles. Coulombic efficiencies less than 1.00 are typically 

attributed to irreversible parasitic reactions (i.e. irreversible Li0 plating/stripping, SEI 

formation, electrolyte oxidation). After room temperature recovery and cell-relaxation to 

electrochemical and thermal equilibrium, the discharge capacity was 31.37 Ah (Cycle 396), 

showing that some of the capacity loss was due to parasitic reactions that consume charge, 

but some can also be ascribed to higher electrode overpotentials during cell aging. After 8 

additional cycles at 25oC (Cycle 404), one 50Ah cell (red curve in  Figure 4.3b) underwent 

non-thermal runaway venting during the discharge process (~3.8V).  

Figure 4.3b takes a closer look at the cycling behavior of the cell that experienced 

non-thermal runaway. Discharge profiles at various operating conditions and cycle number 

(note the temperature and current applied in the legend) are presented. The characteristic 

discharge profile at room temperature (1st cycle) displays characteristics that are consistent 

with NMC532 and graphite full cells (i.e. transition at ~50% SOC attributed to NMC532 

and phase transitions at lower SOCs to graphite). After transitioning from RT to LT in 

Cycle 6 (0.05 C), the most notable change in the discharge profile is the disappearance of 

the phase change region attributed to graphite at low SOCs. This is due to a drastic increase 

in the ohmic and kinetic overpotentials, which drives the voltage to the end-of-discharge 

voltage prematurely (which manifests as a loss in capacity). Upon recovery to room 

temperature (396th cycle), the discharge follows a similar trend to that of the (1st cycle) but 

diverges significantly with the loss of the inflection point attributed to NMC532. The 
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discharge profile is also completely devoid of the phase change response for graphite (refer 

to my archival publications on the same 50Ah cells for delineation)78,98. As mentioned 

above, after 8 RT cycles, this particular cell underwent catastrophic cell failure by non-

thermal runaway and venting.  Operationally, this meant that the pressure valve opened, 

and the safety fuse was triggered, which led to the instantaneous drop in voltage. As shown 

in  Figure 4.3c, the average starting discharge voltage at LT increased nearly linearly with 

cycle number (slope ~ 1.2 mV/cycle) over the first 100 cycles, then tapering off at 0.13 

mV/cycle for the remaining cycles. After recovery to room temperature (RT), the voltage 

was 32 mV higher than the 1st cycle, which indicated a mixed potential between Li0 and 

LixC6. Also, the ohmic resistance at RT was 0.839 mΩ, which more than doubled to 

2.08mΩ at -29oC. By the end of LT cycling, the ohmic resistance had doubled to 4.03 mΩ. 

The increase in ohmic resistance during the transition from RT to LT is attributable to the 

decrease in charge carrier mobility in the electrolyte. The cycling-induced ohmic resistance 

can originate from multiple factors including Li0 plating/SEI formation which decreases 

the ionic conductivity of the electrolyte due to electrolyte reduction(anode) or 

oxidation(cathode).  

Figure 4.3d presents the differential voltage analysis normalized to Qmax (for 

comparison of different capacities).79 QmaxdV dQ-1 is capable of differentiating potential 

plateaus, even in narrow voltage regions where a competing reaction is occurring and can 

be used to interrogate peaks associated with Li-stripping.132 The characteristic QmaxdV dQ-

1 at room temperature/0.3C (labeled: RT/15A) and low temperature/0.05C (labeled: 

LT/2.5A) confirms the hypothesis that Li-stripping does not occur under mild conditions 

and will be used as characteristic curves. Peak 2, 3, and 4 in QmaxdV dQ-1 at room 
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temperature/0.3C is consistent plateaus/peaks ascribed to NMC532/graphite cells. In 

contrast, the QmaxdV dQ-1 for LT/0.3C (labeled: 29oC/15A in Figure 4.3d) shows the 

occurrence of an inflection at the beginning of discharge which indicates a plateau/peak 

for Li-stripping (indicated as peak 1). At the end of LT/0.3C experiments, the cells 

recovered from LT to RT after a 24-hour relaxation period to reach thermal and 

electrochemical equilibrium. Figure 4.3e shows the temperature and voltage profile for the 

cell after equilibration back to 25oC, which starts with a low 0.05C charge. The temperature 

profile during the venting event drops to 25oC, the cell shuts down as indicated by the drop-

in voltage and referred to as non-thermal runaway overpressurized venting. 

4.4.2 SEVERE GASSING AND ELECTRODE CHARACTERIZATION 

The electrolyte and active material (NMC532/graphite) decomposition are 

exacerbated under abuse conditions and results in severe gas evolution. Postmortem gases 

were evaluated by GC-MS and represented in Figure 4.4a. The presence of carbon dioxide 

(CO2) and carbon monoxide (CO) was detected by flame ionization detector (FID). 

Additional gases including ethylene (C2H4), methane (CH4), hydrogen (H2), and oxygen 

were detected by thermal conductivity detector (TCD). It is important to note, GC-MS has 

limitations in deconvoluting multicomponent mixtures and detecting trace quantities of 

short-lived reactive chemicals (e.g. HF, POF3, etc.). Besides the gas evolution reactions 

listed in Figure 4.2, which are the more common gassing reactions, additional side 

reactions can occur during extreme conditions. The proposed gas generation reaction 

mechanism is illustrated in Figure 4.4b. The combination of Li0 deposition and the large 

electrochemical polarization at low temperatures can drive further electrolyte 

decomposition. The formation of ethane (C2H6) proceeds via Li0 corrosion and attack on 
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dimethyl carbonate (DMC), to cause the cleaving of two C-O bonds, then dimerization, 

and subsequent formation of Li2CO3. Also, steric hindrance can prevent significant ethane 

evolution from the cleavage of the methyl groups on DMC and the subsequent dimerization 

reaction. The hydrogenation reaction of the cleaved methyl group can evolve methane. The 

decomposition of ethylene carbonate (EC) via Li0 corrosion and electron propagation 

causes the EC ring-opening mechanism to form ethylene and Li2CO3. Significant release 

of the gases during -29oC cycling, in combination with the shift in equilibrium vapor 

pressure of the electrolyte and gas expansion when the cell was brought back up to 25oC, 

significantly increased the internal pressure – leading to valve rupture and failure.  

 

Figure 4.4. | Plot showing (a) the gases accumulated during cycling, as detected by the Gas 

chromatography-Mass spectrometry (GC-MS) analysis of post-mortem electrodes and (b) 

proposed Li0 corrosion reaction mechanism for gas generation. Reproduced with 

permission from American Chemical Society.130 
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Electrode samples were collected from the non-thermal runway vented cell inside 

the MBraun glovebox (H2O and O2 levels < 0.1 ppm) with a hydraulic prismatic cell 

opener. Table 4.1 reveals significant variations from the “initial-to-final layers” (that is, 

the first unravel of jellyroll to final unravel). The initial layers (outermost) were found to 

have a greater degree of particle delamination from the current collector. Also, there’s 

significant warping at the “curved regions” of the jellyroll. The most likely explanation for 

this originates from the volumetric expansion/contraction during charge/discharge, such 

that the outermost layers experience the cumulative expansion/contraction of all the 

subsequent layers. Subsequently, the outermost layers stretch more, and microfractures in 

the active layer propagate after repetitive cycling, which results in particle delamination. 

Graphite was much more extensively detached from the current collector surface than 

NMC532, which is potentially due to Li0 deposition and gas evolution that leads to drastic 

volumetric expansion.133  Most notably, the curved areas of the jellyroll shows a tendency 

for warping and significant fractures. Also, there was significant color anisotropy from the 

“tab edge to the center” of each layer (RT vs LT cycling). In fact, a ripple-type structure 

propagated from the electrode edge towards the center. 

 

Table 4.1. | Presents the spatial heterogeneity of both the Li(Ni0.5Mn0.3Co0.2)O2 cathode 

and graphite anode for the full jellyroll analysis. 

Electrode 

Designations 

Description 

Initial-to-final 

layers 

Initial layers have a greater degree of particle delamination from the 

current collector and displayed high warping at the curved regions 

compared to the final layers at the interior of the jellyroll 

Flat-to-curved 

regions 

Curved regions appear extremely brittle in comparison to flat 

regions  

Tab edge-to-

center 

Ripple distribution from edges to center region and from tab to 

curved regions 
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Figure 4.5 explores the spatial morphological inhomogeneity of the outermost 

anode of the jellyroll. This analysis looked at the electrode in 8 distinct locations. SEM 

images of the near-tab edge (Location 1) found gas pockets in the vicinity of particles that 

are fused together (that is, indistinguishable boundaries between particles) as well as Li0 

deposits. Furthermore, the gas evolution and transformation of the electrode morphology 

is intensified in immediate proximity to the tab (Location 2). Severe gas evolution at 

Location 2 seems to have caused the significant displacement of the graphite particles, 

indicated by a random distribution of peaks and valleys. Also, large quantities of voids are 

present.  

 

 

Figure 4.5. | SEM images of different areas on the surface of the anode reveal high spatial 

anisotropy of low-temperature Li0 plating/gas generation and the sample collection regions 

on the LixC6 negative electrode at the center with near-tab, center, far-edge, and curvature 

designations. Reproduced with permission from American Chemical Society.130 
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However, the severity of displaced particles due to gas evolution at the tab itself 

(Location 3) was found to be less severe than that of Location 2. Negligible gas pockets 

were found at Locations 4, 5, and 6 which correspond to regions away from the electrode 

edge. At higher magnifications, Li deposits were observed on top of graphite. The Li 

deposits in Locations 1, 2, 3, and 4 appear mossy-like and agglomerated in comparison to 

Locations 5 and 6, where Li covers the surface semi-uniformly. Large electrochemical 

polarization during low-temperature cycling can exacerbate highly stressed areas, and 

cause voltage spikes at the edges, which promotes dendritic whiskers and/or mossy 

Li0.134,135 At the far edge (Location 7), the combination of Li deposits and severe gassing 

were observed similar to that of Locations 1-3. Micro-fractures and cracks were found at 

the curved area of the jellyroll (Location 8). In addition to the micro-fractures, severe Li 

plating was apparent from the SEM and indicated by the lighter deposits on top of graphite 

in every Location. 

In general, SEM analysis suggests large discrepancies in the degree of Li 

deposition, gas evolution, and morphological changes, and can be isolated into 3 primary 

regions. At the electrode edges, there was significant Li deposition in combination with 

severe gassing (indicated by gas pockets and lighter deposits on the surface of graphite). 

The center region of the electrode had less gassing, reduced Li deposition on the surface, 

and graphite agglomeration. At the curved region of the jellyroll, the cumulative 

expansion/contraction of the subsequent layers during cycling led to significant fracturing 

and particle delamination from the current collector. Also, the spatial dependence of Li0 

plating and gas generation was elucidated and provides probable cause for the non-thermal 

runaway venting.  
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4.4.3 VARIABLE STATE OF CHARGE (SOC) IDENTIFICATION  

To better show how the LT abuse cycling impacted electrode morphology, Figure 

4.6 presents enhanced optically filtered images (EOFI) of Li(Ni0.5Mn0.3Co0.2)O2 (Figure 

4.6a) and LixC6 (Figure 4.6b) from both a cell that was cycled under non-abuse conditions 

as well as one that experienced non-thermal runaway venting. Non-abuse cycled cells 

(RT/0.3C and no extreme conditions) had fairly uniform electrodes from the tab to the 

region of high curvature (note, the tab indication is for the anode because +/- tabs alternate 

between full revolutions). The deviations in intensity in the EOFI relates to the deformity 

of the electrode. By interrogating the EOFI, rippling contours can be accentuated in the 

abuse conditions (i.e. electrode warping) in comparison to the non-abuse conditions (i.e. 

uniformity in electrodes). Analysis of the EOFI shows post-mortem electrodes (i.e. vented 

cell) with high anisotropy and significant warping, which is consistent with the severe 

gassing and bloating of the cell. Most notably, the electrodes display a ripple-type 

distribution that propagates from the “edge-to-center” and “tab-to-high curvature”.  

During repetitive charge/discharge at low temperature, current distributions tend to 

follow a ripple-type behavior (i.e. indicated by peaks and troughs of Li0 deposits), which 

is potentially due to warping of the electrodes under high electro-mechanical stress 

conditions. Multi-location liquid N2 Raman spectroscopy was performed on 

Li(Ni0.5Mn0.3Co0.2)O2 and LixC6. Essentially, NMC532 has 𝑅3̅𝑀(D3D
5) space group 

tendencies that produce A1g and Eg in all regions (e.g. curvature, ripples, center, and 

bottom) in Figure 4.6a. The A1g and Eg correspond to M-O (M = Ni, Mn, Co) out of plane 

stretch at ~595 cm-1 and the O-M-O in-plane bend at ~474 cm-1. Therefore, the relative 
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intensities of A1g for M-O and Eg for O-M-O vibrations can be used to determine the spatial 

Li distribution.  

The high-resolution metal-oxygen vibrations at bands between 300-750 cm-1 for 

the cathode change significantly based on locations, which indicates different lithiated 

states of NMC532 lattice across the electrode. At a lower degree of lithiation (x < 0.4) or 

subject to higher local voltages, the Raman peak shifts from 595 cm-1 to values greater than 

600 cm-1 and become a merged-broad peak. However, when the Raman A1g and Eg bands 

are well resolved, NMC exists at higher state of charges and experienced lower voltages. 

The Raman spectra at several locations on the anode and cathode are shown in the bottom 

portions of Figure 4.6 and Figure 4.6b, respectively. Qualitatively, well-resolved A1g and 

Eg bands are observed for NMC electrodes at high curvature, which indicates higher 

degrees of lithiation (I595/I474 ~1.81). When correlating this region with graphite (Figure 

4.6b), a pronounced Raman peak at 1837 cm-1 was observed and was attributed to 

vibrations from Li-carbide (Li-CC-Li) bonds.46  

To form Li2C2, the Li0 corrosion reaction can facilitate neighbor-neighbor EC 

reduction to adsorbed acetylene and further reaction to Li2C2. The same 1837 cm-1 peak 

can be observed at various locations on the graphite electrode including regions of high 

curvature, ripple-peaks near the edge, and the bottom edge. By focusing the Raman laser 

source on the striation lines (ripple-peaks) and at the negative lines (ripple-troughs), an 

1837 cm-1 high-intensity peak trend can be observed. Li-carbide was found to preferentially 

form on ripple-peaks and absent at the troughs. Therefore, regions of high stress (e.g. high 

curvature, ripple peaks, edges) exacerbate Li0 deposition and subsequently results in the 

conditions that favor the formation of Li-carbides. Also, the degree of lithiation after low-
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temperature repetitive cycling varies spatially in parallel with the counter graphite 

electrode. High lithiation states for NMC was found in the highly stressed regions, which 

corroborates the finding that under low-temperature cycling, severe gradients cause 

preferential Li residence.  

 

 

Figure 4.6. | Enhanced optically filtered images of (a) Li(Ni0.5Mn0.3Co0.2)O2 and (b) LixC6, 

and multi-location liquid nitrogen Raman spectroscopy of the respective electrodes after 

non-abuse conditions (room temperature) and post-mortem (low temperature) to analyze 

spatial distribution of chemical species, state of charge, and electrolyte degradation 

products. Reproduced with permission from American Chemical Society.130 
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4.4.4 CHEMISTRY ANALYSIS OF LIB FAILURE MODES UNDER EXTREME OPERATION 

Finally, XPS was used to understand the chemical transformations of NMC532 

after low-temperature cycling and to find the causes for the over-pressurization of the cell 

without thermal runaway. XPS spectral analysis and deconvolution is shown in Figure 

4.7for NMC532 and Figure 4.7b for graphite. XPS results for uncycled NMC532 showed 

the presence of NiO (Ni2p peak 854.9 eV), CoO (Co2p peak 780.2 eV), and MnO2 (Mn2p 

peak 642.5 eV). Of course, even electrodes that were cycled under non-abuse conditions 

(e.g. RT/0.3C discharged to 2.8V) showed deviations in the chemical species and oxidation 

state from the undischarged cell. The speciation of NMC532 electrodes found Ni2O3 (855.8 

eV), CoO (780.2eV), Co(OH)2 (782.0eV), MnO2 (642.4 eV), and MnFx (644.4eV).  

For cells discharged at LT, there were significant deviations in the chemical species 

present on the anode, such as the presence of NiFx/Ni2O3 (857 eV), NiO (854.6 eV), and 

Ni-carbides (849.9 eV). This is shown in the deconvoluted Ni 2p, Mn 2p, O 1s, and C 1s 

spectra in Figure 4.7a. The existence of two valence states for Ni (Ni2+ and Ni3+) also 

shows that the material degree of lithiation is not homogeneous. For Mn, cells cycled at 

LT showed the presence of MnFx(643.5 eV), Mn2O3 (641.5 eV), and Mn-carbides (638.0 

eV). A prominent peak for metal oxides is observed in the O1s for the non-abuse cycled 

electrodes but a significant depression in the metal oxide 529.5 eV peak was observed in 

the cells cycled at LT. Therefore, significant oxygen loss from NMC532 can be inferred 

and is also confirmed by the speciation of Ni/Mn/Co fluorides and carbides in Ni2p, Mn2p, 

and Co2p. The oxygen-associated species on the surface layer indicates the presence of C-

O bonds (peak at 531.0eV) and C=O bonds (peak at 532.0eV), which are the expected 

spectra for Li2CO3 and lithium alkyl carbonates.136,137   
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Furthermore, the cathode electrolyte interphase (CEI) formed at low temperatures 

can be probed in Figure 4.7a. The presence of carbon bonded to one oxygen (C-O) at 

286.1eV, to two oxygens (O-C=O) at 288.2 eV, and three oxygens (carbonate-type) at 

290.1eV was found. The bond formations reveal the CEI contains lithium carbonate 

(Li2CO3) and possibly lithium alkyl (that is, methyl or ethyl) carbonates (R-

CH2O(C=O)OLi), which corroborates the O 1s spectrum analysis. Also, the spectrum 

suggests the ring-opening mechanism for EC, which can lead to the formation of 

LiO(C=O)OCH2CH2O(C=O)OLi (it is important to note that the decomposition product 

can be formed during manufacturing or induced by harsh low-temperature conditions).138  

The metal carbide peak at 283.0eV confirms the degradation of NMC532. The 

phosphorus content in the sample is only 1.2 by mass or 0.6 by atomic percentage. The P2p 

spectra indicate the presence of phosphates (133.2 eV), which are LiPF6 decomposition 

products such as LiPOF2 or Li2PFO3, and are typically given a generic formula as LixPFyOz. 

Overall, the electrolyte decomposition products on NMC532 consist of primarily Li2CO3, 

lithium alkyl carbonates (CH3O(C=O)OLi, CH3CH2O(C=O)OLi and/or 

LiO(C=O)OCH2CH2O(C=O)OLi), phosphates (LiPOF2 and/or Li2PFO3) (Note: further 

deconvolution of the actual species require more information than C1s and O1s). There is 

significant anisotropy in the electrolyte and/or active material decomposition products 

across the electrode (i.e. tab, center, and high curvature regions), which indicates high 

spatial dependence in the capacity fade and failure mechanisms of the cell.  



www.manaraa.com

96 

 

880 870 860 850 658 651 644 637 537 534 531 528 292 288 284 280

880 870 860 850 60 56 52 48 537 534 531 528 292 288 284 280

Carbide
849.9 eV

NiFx, Ni2O3

857.0 eV

NiO
854.6 eV

Ni 2p

X
P

S 
P

ea
k 

In
te

n
si

ty
 /

a.
u

.

 

 

Li(Ni0.5Mn0.3Co0.2)O2

LixC6

(a)

(b)

Carbide
638.0 eV

MnFx
643.5 eV

Mn2O3

641.5 eV

Mn 2p

 

 

Metal oxides
529.5 eV

OH
533.5 eV

O 1s

C=O
532.0 eV

C-O
531.0 eV

 

 

 

Carbides
283.0 eV

C 1s 

Carbonates, CFx
290.1 eV

O-C=O
288.2 eV

C-O
286.1 eV

C=C
284.6 eV

 

 

 

Carbide
849.4 eV

NiFx, Ni2O3

857.8 eV

NiO
854.3 eV

Ni 2p

 
 

LiF, Li2CO3, LiOH 
55.3 eV

Binding Energy /eV

Li 1s 

Lio

52.5 eV

 

 

 

Metal oxides
528.6 eV

OH
533.5 eV

O 1s

C=O
532.0 eV

C-O
530.8 eV

 

 

 
Carbides
281.2 eV

C 1s 

Carbonates, CFx
289.7 eV

O-C=O
288.0 eV

C-O
286.1 eV

C=C
284.6 eV

 

 

 

 

Figure 4.7. | X-ray photoelectron spectroscopy analysis of (a) Ni 2p, Mn 2p, O 1s, C 1s for 

Li(Ni0.5Mn0.3Co0.2)O2, and (b) Ni 2p, Li 1s, O 1s, C 1s  for graphite electrodes after -29oC 

cycling and non-thermal runaway over-pressurization and venting. Reproduced with 

permission from American Chemical Society.130 

 

Multiple-location XPS was very useful for developing a firm understanding of the 

degradation processes at the anode. The Ni2p, Li 1s, O 1s, and C 1s spectra at the curved 

region of the anode are given in Figure 4.7b.  Spectral peaks were discovered in the Ni2p 

region for all three anode regions (tab, edge, high curvature), which indicates Ni as the 

primary transition metal that is dissolved and redeposited on the anode at LT. Furthermore, 

in the Ni2p spectra, Ni exists in a mixed oxidation state with NiFx/Ni2O3 (857.8 eV), NiO 

(854.3eV), and Ni-carbide (849.4eV) species. In addition, by probing the Li1s spectrum a 

muddled peak at 55.3eV attributes the solid electrolyte interphase (SEI) with LiF, Li2CO3 

and LiOH species. Also, the shoulder peak protruding out at lower binding energies 
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indicates the presence of metallic Li0 at a binding energy of 52.5 eV, which confirms low-

temperature plating and irreversibly trapped Li0, even after room temperature recovery and 

cycling. The quantity of Li also varies spatially along the electrode, which leads to 

significant gradients in the concentration, potential, and current during operation as well as 

uneven Li deposition at LT. In the O1s spectrum for LixC6, there is a prominent metal oxide 

peak at 528.6eV which is ascribed to Li2O and Ni2+/Ni3+ species in the form of NiO and 

Ni2O3. Also, similar C-O (530.8eV), C=O (532.0eV), and OH (533.5eV) peaks can be 

deconvoluted from the broad main peak and ascribed to the SEI. In the C1s spectra, similar 

bonds are observed for carbonates/CFx (289.7ev), O-C=O (288.0eV), C-O (286.1eV), C=C 

(284.6eV), and metal carbide (281.2eV). The metal carbide peak shoulder extends further 

out and displays significantly greater electron intensity in comparison to NMC532. Surface 

Ni/Mn speciation of the NMC532 electrode indicates 18.3%/35% carbides near the tab, 

54.4%/34.6% near the center, and 11.4%/32.7% near the region of high curvature. The low 

Li atomic percentage near the center exacerbates the degradation of the cathode via metal 

carbide formation. Therefore, the net flux of Li repetitively migrating towards areas of high 

stress during cycling leads to over-exhaustion of NMC532 surfaces and results in severe 

degradation.  

Overall, one of the key findings of this work is that the degradation processes for 

large jellyroll electrodes were highly spatially heterogeneous, where the degradation 

process was found to be exacerbated at highly stressed regions (e.g. high curvature, ripple-

peaks, edges). SEM analysis discovered severe gassing and pocket formation near regions 

of high mossy-like Li0 deposits. Also, the complete destruction of the graphite particle 

morphology was observed and realized by the large-scale fusing of graphite particles (i.e. 
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indistinguishable boundaries that potentially originate from degradation residuals due to 

Li0 plating) that span for >500m. At the center regions, Li0 plating still occurs but follows 

a relatively more uniform deposition process. Also, negligible gassing was observed at the 

center regions. At the electrode curvature, cumulative volumetric expansion/contraction of 

every layer during cycling led to micro-fractures and large-scale cracks. Furthermore, XPS 

revealed severe cathode degradation and indicated by oxygen release and subsequent M-

carbide (M = Ni, Co) degradation product. Low-temperature cycling appears to exacerbate 

the cathode electrolyte interphase (CEI) formation due to large electrochemical 

polarization, and XPS reveals the chemistry consists of significant quantities of Li, C, and 

O elements that encompasses Li2CO3, lithium alkyl carbonates (CH3O(C=O)OLi, 

CH3CH2O(C=O)OLi and/or LiO(C=O)OCH2CH2O(C=O)OLi), phosphates (LiPOF2 

and/or Li2PFO3). Metallic Li0 and carbide formation at the anode was found to be severe. 

By using Raman spectroscopy, a ripple-type behavior was observed for large jellyroll 

electrodes. Also, Li-carbide (Li-CC-Li) 1837 cm-1 high-intensity band was observed at 

ripple-peaks and absent at ripple-troughs. Lastly, highly stressed regions during low-

temperature cycling were found to have severe gassing, mossy-like Li0 plating, 

morphological changes, and Li-carbide formation.  

The speciation of Ni-species (Table 4.2) and the atomic ratio of Ni in the 

anode:cathode is 1.1:2.5 (Table 4.3), which means that the high-intensity peak from metal 

carbides (C1s peak at 281.eV) is attributed to a different metal-substitution (that is, 

lithium). Therefore, one possible explanation for the high-intensity peak is the formation 

of lithium carbides (Li2C2) from the corrosion of irreversibly trapped Li0 that is deposited 

during plating at low temperature. Li2C2 is the most thermodynamically stable state out of 
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the possible lithium carbides (including LiC6, Li4C2, Li4C3), and exist with C2
2- as the 

backbone tethered to two alkali metals in the form of LiC≡CLi. Li-carbides have similar 

applications as diamonds,139 and exhibit physical properties of extreme hardness, 

toughness, and excellent electrical conductivity, which can harden soft Li0 deposits.  

 

Table 4.2 | Transition metal speciation for various regions (e.g. edge, center, curvature) of 

surface Li(Ni0.5Mn0.3Co0.2)O2 and LixC6 

Transition 

metal 

speciation 

NMC532 

Near-tab 

 

NMC532 

Center 

NMC532 

Curvature 

LixC6 

Near-tab 

 

LixC6 

Center 

LixC6 

Curvature 

NixCy  18.3% 54.4% 11.4% 33.9% 26.7% 27.3% 

NiO  39.7% - 25.3% 14.0% 35.3% 28.5% 

NiFx, 

Ni2O3 

42.0% 45.6% 63.3% 52.1% 38.0% 44.2% 

       

MnxCy 35.0% 34.6% 32.7% - - - 

MnO2 65.0% 65.4% 35.3% - - - 

Mn2O3 - - 32.0% - - - 

 

 

Table 4.3 | Mass and atomic percentages (%) of the elements Li, P, C, O, F, Mn, Co, and 

Ni at different regions for Li(Ni0.5Mn0.3Co0.2)O2 and LixC6 from XPS spectra analysis after 

non-thermal runaway venting 

 Li(Ni0.5Mn0.3Co0.2)O2 LixC6  
Edge Center High 

Curvature 

Edge Center High 

Curvature 

Species  Atomic 

% 

 Atomic 

% 

 Atomic 

% 

 Atomic 

% 

 Atomic 

% 

 Atomic 

% 

Li  15.1  7.3  11.1  30.8  16.5  23.6 

P  1.3  1.0  0.6  0.7  0.9  1.1 

C  43.2  52.6  48.0  28.0  40.9  34.8 

O  21.0  18.5  22.0  30.8  28.3  26.9 

F  16.7  16.3  14.6  8.9  11.8  12.5 

Mn  0.3  0.6  0.3  -  0.2  - 

Co  0.1  0.8  0.9  -  -  - 

Ni  2.3  2.9  2.5  0.8  1.4  1.1 
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4.5 SUMMARY 

Overall, one of the key findings of this work is that the degradation processes for 

large jellyroll electrodes were spatially heterogeneous, where the degradation processes 

were found to be exacerbated at highly stressed regions (e.g. high curvature, ripple-peaks, 

edges). SEM analysis discovered severe gassing and pocket formation near regions of high 

mossy-like Li0 deposits. In addition, the complete destruction of the graphite particle 

morphology was observed and realized by the large-scale fusing of graphite particles (i.e. 

indistinguishable boundaries that potentially originate from degradation residuals due to 

Li0 plating) that span for >500m. At the center regions, Li0 plating still occurs but follows 

a relatively more uniform deposition process. At the electrode curvature, cumulative 

volumetric expansion/contraction of every layer during cycling led to micro-fractures and 

large-scale cracks. Furthermore, XPS revealed severe cathode degradation and indicated 

by oxygen release and subsequent M-carbide (M = Ni, Co) degradation product. Low-

temperature cycling appears to exacerbate the cathode electrolyte interphase (CEI) 

formation due to large electrochemical polarization, and XPS reveals the chemistry 

consists of significant quantities of Li, C, and O elements that encompasses Li2CO3, lithium 

alkyl carbonates (CH3O(C=O)OLi, CH3CH2O(C=O)OLi and/or 

LiO(C=O)OCH2CH2O(C=O)OLi), phosphates (LiPOF2 and/or Li2PFO3). Metallic Li0 and 

carbide formation at the anode was found to be severe. By using Raman spectroscopy, a 

ripple-type behavior was observed for large jellyroll electrodes. In addition, Li-carbide (Li-

CC-Li) 1837 cm-1 high-intensity band was observed at ripple-peaks and absent at ripple-

troughs. Lastly, highly stressed regions during low-temperature cycling were found to have 

severe gassing, mossy-like Li0 plating, morphological changes, and Li-carbide formation.  
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CHAPTER 5: STRATEGIC DESIGN OF DURABLE, SAFE, ENERGY 

DENSE LIB ANODES
  

The demands of emerging portable electronics, electric vehicles (EVs), and space 

technologies have ushered in a new paradigm for engineers and scientists to develop safe, 

durable, and lightweight rechargeable batteries.2,4,140,141 Commercial LIBs, which were 

discussed in Chapters 1-4,  have become the backbone of our electrified and interconnected 

society, and have allowed device manufacturers to push the performance boundaries of cell 

phones, laptops, and other devices. However,  the emergence of enhanced capabilities (e.g. 

GPS, music players, web browsing, video chats) and processing power (e.g. emerging 5G 

networks, cloud computing) is expected to drain existing onboard batteries at an alarming 

rate – thereby creating an urgency for Chapter 5 to discuss the development of advanced 

next-generation, high energy density, and safe LIB materials.116,142 Also, high-rate 

charging is highly desirable – especially in the electric vehicle sector that is looking to 

compete with the timescale for refueling both gasoline and H2-fueled cars (~5 min, a 

battery charging rate ~10 C).  During such rapid charging of existing Li-ion batteries 

(LIBs), over polarization at the anode drives Li deposition and dendrite formation, which 

can cause internal short-circuiting leading to thermal runaway and catastrophic failure of 

the battery pack.5,122 Therefore, new LIB anode materials are needed that are safer (no Li 

plating during fast charging), have higher capacities (> 600 mAh g-1), and are durable (> 

1000 deep cycles).42,55,143 
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5.1 MATERIAL SELECTION AND DESIGN STRATEGIES  

One pathway to achieve high-rate charging at lower overpotentials (reducing the 

driving force for Li-plating) is to create nano-sized electroactive materials.  Small particle 

sizes allow for enhanced reaction kinetics and rapid diffusion.117,144  Small size can 

simultaneously enhance the ability of active particles to accommodate strain, as well as 

significantly increase the number of charge carriers near the electrode-electrolyte interface. 

However, batteries employing nano-sized active materials are typically penalized with 

increased irreversible capacity loss, as well as decreased stability and reversibility.  The 

result is typically electrodes with low coulombic efficiency (CE), mediocre capacity, and 

limited cycle life.   

A second pathway to avoiding Li plating is to search for materials with a reversible 

potential substantively higher than the Li/Li+ redox couple to provide a buffer in its 

operating potential.  Though materials with higher anode potentials might have lower 

operating voltages, materials with much higher theoretical capacity than commercial 

graphite will more than compensate for any energy density concerns, and the ability to 

safely operate at higher discharge rates can also result in comparable or superior power 

density.  The desire to have nanostructured active materials with a higher anode potential 

during charge/discharge leads to the consideration of a whole new set of chemistries that 

have never before been deployed in commercial LIBs such as metal hydrides, nitrides, 

oxides, fluorides, phosphides, and sulfides33,44,145–149 – each of these conversion materials 

has its advantages and challenges, but the most widely studied family of conversion anodes 

is metal oxides (MOs). Recall in Chapter 1, the primary advantages that MO materials have 

over the standard graphite intercalation compounds (GICs) are: 1) multiple electrons per 



www.manaraa.com

103 

 

repeat unit (e.g. 2 e-/NiO, resulting in a theoretical capacity of 718 mAh g-1) compared to 

one electron per six carbons (372 mAh g-1 theoretical capacity) – giving MO-anode LIBs 

a higher theoretical energy density than graphite-anode LIBs; and 2) a redox potential 

approximately 1 V greater than Li/Li+ redox couple, which makes Li plating 

thermodynamically unfavorable.   

MOs also have advantages over the most widely touted graphite alternative, Si:  1) 

MOs can be operated between 0-100% state of charge at high rates with as little as 5-10 

wt% carbon added to the electrode34, where Si electrodes typically have nearly 50% added 

carbon150–153 to achieve high performance and employ voltage cutoff strategies.  In 

combination, these significantly limit the achievable capacity of Si-based anodes;  2) the 

volumetric expansion of MOs is much less than Si, typically ~60%, versus ~300% for 

Si;154–156 and 3) MOs are air-stable and easy to process, unlike Si (and other more widely 

discussed anode replacements, such as Li metal).  

5.2 THE STRUCTURE AND CHEMISTRY OF THE SOLID ELECTROLYTE 

INTERPHASE
  

As higher energy density materials are developed to enable such next-generation 

Li-ion batteries, their interfacial interaction with the electrolyte and reaction mechanism 

might be expected to be different than existing materials. This will be particularly 

important at the anode, where the formation of the solid electrolyte interphase (SEI) from 

electrolyte decomposition at low potentials is one of the most important phenomena that 

allow for conventional graphite anodes to be chemically stable over long-duration cycling 

and/or storage. The SEI and its formation is well-characterized for graphite, and even on 

some alternative materials such as Si.36,157,158  Figure 5.1a shows the electrode/electrolyte 
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interface immediately after cell assembly, but before charge has been passed, where a non-

faradaic electric double layer formation (via specific and non-specific 

adsorption/desorption) and faradaic electrochemical reactions (facilitated by the reversible 

transfer of electrons at open circuit) occur.159 The thermodynamic potential gap between 

the electrode and electrolyte (Figure 5.1b) determines the initial specific adsorption 

behavior, solvation-shell near the interface, and the electrochemical reaction (e.g. 

intercalation/conversion/alloying, electrolyte decomposition, Li plating, etc.). The SEI is 

formed during initial charging where the anode potential is driven negative of its open-

circuit value (Figure 5.1c). Electrolyte instability at these potentials leads to electrolyte 

reduction to more stable compounds – both organic and inorganic. One of the most 

pervasive components of modern electrolytes is ethylene carbonate (EC), and it is known 

to play an important role in SEI formation.  Aurbach et al.19,160 proposed a general reaction 

pathway for EC reduction on carbon-based anodes.  

𝐸𝐶 + 2𝑒− + 𝐿𝑖+ → 𝐶2𝐻4 + (𝐶𝑂3𝐿𝑖)−  Equation 5.1 

(𝐶𝑂3𝐿𝑖)− + 𝐿𝑖+ → 𝐿𝑖2𝐶𝑂3 Equation 5.2 

(𝐶𝑂3𝐿𝑖)− + 𝐿𝑖+ + 𝐸𝐶 → 𝐿𝑖2𝐸𝐷𝐶(𝑃𝑆𝐸𝐼) Equation 5.3 

Experimentally, it has been shown that EC reduction occurs at potentials around 

0.8-1.4V vs. Li/Li+, which is in reasonable agreement with theoretical calculations that fall 

between 0.48 – 0.96V. 19,160  EC undergoes a 2-electron reduction, though the reaction 

pathway can vary based on the EC concentration. At high EC concentrations, the 1st 

electron transfer destabilizes a Li+-EC moiety, causing the carbonate anion to attack a 

neighboring Li+-EC to form Li+(CO3)R(CO3)Li+ (where R can be methyl, ethyl, butyl, 

etc.).  



www.manaraa.com

105 

 

 

Figure 5.1 | Energy diagram of a Li-ion battery and reaction mode inside the electric double 

layer (pre-cycled) and the solid electrolyte interphase (post-cycled). The schematic 

captures the interfacial dynamics in the inner/outer Helmholtz plane (I/O-HP) and shows 

desolvated Li+ transport through the SEI. Adapted from 165,166 Reproduced with permission 

from The Royal Society of Chemistry.167 

 

At low EC concentrations and potentials closer to Li/Li+ redox couple, the 

carbonate anion will instead abstract a Li+ to form Li2CO3.
19

 The more stable compounds 

become an electronically insulating shield (typically 10-40nm for graphite-based 

electrodes22, ~0-50nm for metal oxide based electrodes161, and non-observable for titanate-

based electrodes162) that naturally prevents the high energy electrode surface from further 
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reaction, and enhancing long-term durability and capacity retention.133 Depending on the 

electrolyte the SEI is considered to finish after 1-5 cycles163, however different stress 

factors (e.g. volumetric expansion, gas formation, Li-plating, external impact) can expose 

reactive surfaces that allow additional SEI to grow during operation (Figure 5.1d). The 

continual build-up and consumption of the electrolyte increase the internal resistance of 

the cell, leading to performance loss (Figure 5.1e), which can eventually include battery 

failure. Though the SEI formation on carbon/graphite has been extensively studied, very 

little information exists in the literature regarding SEI formation on promising next-

generation anode materials with high capacity, which are expected to be vital to device 

design and operation in the near future as the demand to increase the energy density of Li-

ion batteries for commercial devices intensifies.164 

By leveraging the breakage of bonds, both alloying materials (e.g. Si, capacity up 

to 4200mAh g-1)152 and M-X conversion materials (capacity ~ 700-1200 mAh g-1
, where M 

= V, Cr, Mn, Fe, Co, Ni, Cu, W, Mo, Ru, and X = H, N, O, F, P, or S)37, can store 

significantly more electrons per unit mass than intercalation compounds. Alloying 

materials undergo several crystallographic phase changes to accommodate the inclusion of 

Li, which results in a tradeoff between the desire for high energy density and the need to 

avoid catastrophic volumetric expansion and material fracture. When the latter occurs, the 

original solid-solid interfaces (active material-binder-conductive carbon) break down, and 

contact resistance increases, or, worse yet, delamination (electrode particles becoming fully 

detached from the current collector) occurs. The most common characteristic of alloying 

materials in Li-ion batteries is rapid capacity loss (some <10 cycles)168.  Conversion 

materials, on the other hand, operate under a similar bond-breaking principle, but the 
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reaction also involves the displacement of the counter-ion (X) from the parent host (M). 

This helps to limit volumetric expansion.  Recall, the conversion-based reactions follow 

the generalized reaction depicted below and in Chapter 1,37 

Mα
μ+

Xβ
π− +  βπ(Li+ + e−) ⇌  αM + βLiπX  Equation 5.4 

Also unlike Si, M-X conversion-based materials have a higher reversible redox 

potential than graphite(~1V vs Li/Li+)169.  Though at first, this may seem like a negative, 

because it does slightly lower the operating voltage in practical batteries, it is actually an 

advantage because high potentials offer significantly increased protection from thermal 

runaway by avoiding Li plating and dendrite formation.  Additionally, it should be noted 

that the much higher capacity for M-X materials more than compensates for the reduced 

operating voltage from an energy density perspective. Though M-X materials do show 

promise, they are still relatively understudied, particularly when it comes to their long-term 

stability and operation in LIBs.  That being said, researchers33,34,170–172 have started to 

understand and control the in-cell M-X degradation pathways, including 1) metal (charge) 

trapping, 2) transition of the MO to higher oxidation states, 3) exposed reactive sites for 

electrolyte decomposition, and 4) agglomeration-induced loss of electrochemically active 

sites, which causes capacity fade and oscillations/low coulombic efficiency. The various 

methodologies that have been proposed in the literature to improve the cyclability of these 

M-X electrodes (encapsulation, nanoconfinement, etc.)173,174.  One of the M-X materials 

that have particularly shown high performance recently is NiO.  In fact, NiO-based anodes 

have boosted their cycle performance from <25 cycles30 a decade ago to >2000 deep cycles 

in 2020 at a 1C rate175,176. These promising results have increased interest in this family of 

materials for commercial applications, which makes further studies regarding their 
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reactivity and long-term stability an important endeavor, including developing a better 

understanding of the formation of the SEI on these materials.    

Therefore, the overarching goal of this section is to electroanalytically decouple the 

multi-step SEI reaction mechanism from the conversion reaction at the Ni-O/electrolyte 

interface.   A multitude of electroanalytical techniques, such as galvanostatic intermittent 

titration technique (GITT) and transient voltammetry were performed.  The resulting data 

was analyzed using kinetic relationships derived from electron transfer theory (Marcus-

Hush-Chidsey, Butler Volmer). Diffusivity (S2D) and apparent exchange current (i0S) 

measurements at different states of charge (SOC) were calculated to elucidate the complex 

mesostructural changes of the conversion reaction. The effective transfer coefficient (eff) 

was used to provide a mechanistic understanding of EC activation at the M-X/electrolyte 

interface. The combined electroanalytical techniques and theory are combined to 

fundamentally deconvolute the complex growth mechanism of the SEI on conversion-

based electrodes.    

 

5.3 EXPERIMENTAL AND THEORETICAL FRAMEWORK 

5.3.1 REAGENTS 

Pluronic P123 triblock copolymer (poly(ethylene glycol)-block-poly(propylene 

glycol)-block- poly(ethylene glycol), Mn ~5800, CAS#9003-11-6), tetraethyl orthosilicate 

(TEOS, >99.0%, CAS#78-10-4), hydrochloric acid (HCl, ACS reagent grade 37%, 

CAS#7647-01-0) were purchased from Sigma Aldrich. Nickel (II) nitrate hexahydrate 

(Ni(NO3)2-6H2O, 99%, CAS#13478-00-7) and potassium hydroxide (NaOH, Certified 

ACS, CAS#1310-58-3) were purchased from Fisher Scientific. Vulcan XC-72R was 



www.manaraa.com

109 

 

purchased from Cabot. All water used in the synthesis processes uses ultrapure deionized 

water (18.2 MΩ cm) from a lab-scale Millipore Milli-Q Integral system with E-POD. All 

chemicals were used as received with no further purification. 

5.3.2 SYNTHESIS OF HIGHLY ORDERED MESOPOROUS NICKEL OXIDE (NIO) 

Highly ordered mesoporous NiO was produced via a mesoporous silica (SBA-15) 

template-assisted synthesis. The SBA-15 template was synthesized in accordance with a 

similar procedure in previous publications.33,177,178 Typically, 6g of Pluronic P123 triblock 

copolymer and 13.6 mL tetraethyl orthosilicate was dissolved in 180mL of concentrated 

(2M) HCl solution, heated to 45oC for 20 hours, and then heated to 100oC for an additional 

24 hours. The product was washed with a 50:50 vol.% DI water/ethanol mixture, dried in 

a Fisherbrand Isotemp Model 281A vacuum oven (~ -30in.Hg, 50oC) for 12 hours and 

calcined at 500oC for 3 hours in air.   

Next, an aqueous 0.5M Ni(NO3)2 solution was added dropwise to a beaker 

containing the synthesized SBA-15 until 6.3 mL/gSBA-15 was achieved. The resulting gel 

was magnetically stirred under ambient conditions and then calcined at 400oC for 3.5h in 

air. After calcination, the template was removed by immersion in a 5M KOH solution for 

12 hours at 100oC.  Finally, the remaining solids were rinsed with three rounds of excess 

deionized water, centrifuged at 4500rpm, and dried under vacuum at 70oC for 8 hours.  

5.3.3 ELECTRODE FABRICATION AND COIN CELL ASSEMBLY 

Anodes were created using either the highly ordered mesoporous NiO anodes or 

Vulcan XC-72R carbon.  Vulcan XC-72R carbon black was chosen in this study as a 

control material since it does not store charge significantly via intercalation; this allows the 
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reaction plateaus to be dominated by electrolyte decomposition and not muddled with 

intercalation-based phase changes.  NiO-based anodes were prepared with a ratio of 95:5 

active material to polyvinylidene fluoride binder (PVDF, Kynar Blend).  Vulcan-based 

anodes were prepared with a 90:10 carbon:PVDF ratio. The change in the active 

material:PVDF ratio between the two types of electrodes considers the differences in their 

surface area (conductive carbon > NiO) and the amount of binder required to maintain 

sufficient particle-particle contact. In a typical setup, 400 µL of N-methyl-pyrrolidone 

(NMP, Acros, 99.5% Extra Dry) solvent was micropipetted into a vial containing a total of 

100 mg of total solids to obtain an ink with moderate viscosity. The ink was homogenized 

via 3 successive rounds of sonication (20 mins) and magnetic stirring (8 hrs). The ink was 

sprayed onto a 50 µm thick Cu current collector (Alfa Aesar, Catalog No. AA42972FI) 

with an Iwata-Medea Eclipse HP-CS. The electrodes were then dried at 75oC for 24 hours 

under vacuum. Then, to minimize particle-particle contact resistance, the electrodes were 

hydraulically pressed at 1500 lbs (MTI 5T Max. Manual Mechanical Press) and calendared 

(MTI Electric Roller-MSK-MR100DC) to a specified gap of 60 µm. The final active 

loading target was 1 mg cm-1.  

Coin cell assembly was done inside of an argon-filled (Ultra-high purity 5.0 Argon, 

Airgas) MBraun Labmaster SP glove box (O2 and H2O < 0.1 ppm). All coin cells were 

assembled in a half cell configuration using CR2032 coin cells (Hohsen Corp.).  The 

counter/reference electrode was a 1.5 cm diameter lithium metal foil (99.9%, Alfa Aesar).  

In a typical procedure, the Li foil was polished, positioned at the center of the coin cell 

base, and then flattened to ensure minimal contact resistance. Then, 15 µL of electrolyte 

(1M lithium hexafluorophosphate (LiPF6, Acros 98%) in a 1:1:1 volumetric mixture of 
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ethylene carbonate (EC, Acros 99+%): dimethyl carbonate (DMC, Acros 98+%): diethyl 

carbonate (DEC, Acros 99+%)) was injected uniformly onto the Li-metal. A Celgard 2320 

tri-layer PP/PE/PP separator was centered on top of the Li-metal/electrolyte surface. Next, 

an additional 15 µL of electrolyte was injected uniformly onto the separator. The gasket 

was placed along the outer diameter of the coin-cell base to ensure proper centering of the 

working electrode and sealing of the cell. A spacer disk and spring was used to ensure 

uniform distribution of pressure and electrical continuity in the cell. Finally, the cap of the 

coin cell was used to seal the cell with an MTI hydraulic press (MSK-110) at a pressure of 

750 PSI.  

5.3.4 CHEMICAL AND STRUCTURAL CHARACTERIZATION 

Pre-/post-cycled transmission electron microscopy (TEM) was performed on 

electrodes of interest by a similar procedure that was outlined in a previous publication.30 

To preserve the region of interest during microscopy, a Cu TEM finder grid (3mm 

diameter, 100 mesh, Ted Pella, Inc) was used. First, 1µL of diluted active material slurry 

(1:10 dilution ratio) was deposited onto the grid and capillary drained via light application 

of a lint-free laboratory cloth (KimwipesTM). The procedure was repeated three times and 

fully-dried before TEM. After microscopy, the TEM grid, loaded with the active material, 

was mounted into a custom-designed electrode fixture between a Teflon shroud and a 

cylindrical Cu current collector. The assembly was electrochemically cycled (details in the 

following section) in a 3-electrode cell inside of an Ar-filled Mbraun glovebox.  After the 

electrochemical experiments, the TEM grid with active material removed from the 

assembly was submerged in excess DMC for 30 minutes and dried inside the glovebox for 

24 hours prior to additional microscopy. All microscopy was performed either using a FEI 
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Talos scanning transmission electron microscopy (S/TEM) and a Hitachi H8000 TEM with 

integrated energy-dispersive x-ray spectroscopy (EDS). In addition, X-ray Photoelectron 

Spectroscopy (Kratos AXIS Ultra DLD XPS System) was used to determine the elemental 

composition on the surface, chemical state, and electronic structure of the active material. 

5.3.5 ELECTROCHEMICAL TESTING 

Three electrochemical methods were primarily used in this work.  Current-pulse 

relaxation, via the galvanostatic intermittent titration technique (GITT), was done using an 

Arbin MSTAT battery cycler under pseudo-isothermal conditions inside a Tenney T6S-1 

climate-control chamber at 25oC. The method involves 100 intermittent current pulses at 

C/10 for a time that satisfies 𝑡 ≪ 𝐿2/𝐷, followed by a relaxation time (i.e. no current) to 

electrochemical equilibrium. In addition to a time constraint (i.e. satisfies 𝑡 ≪ 𝐿2/𝐷), the 

voltage window was specified to be 0.001-3.0V. The GITT data allowed for the apparent 

diffusion coefficients and apparent exchange current densities to be extracted as a function 

of the state of charge (SOC). The other method used in this work was linear sweep 

voltammetry (LSV), which was done using the Arbin MSTAT battery cycler. LSV was 

used to determine the effective transfer coefficient as a function of the SOC during a 

parallel GITT test. The scan rate was 1mV s-1 and the upper/lower cutoff voltage was +/- 

100mV vs. the open circuit voltage (OCV). A 30-minute relaxation time was given between 

the positive and negative scan. Finally, the samples deposited on the TEM grid for pre-post 

imaging were exposed to cyclic voltammetry (CV) at a 0.1mV/s scan rate over the same 

potential window as the GITT measurements (0.001- 3.0 V).  
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5.3.6 ELECTROKINETIC FRAMEWORK 

The electrokinetics for complex heterogeneous reactions (combinations of multi-

step electrochemical and/or chemical reactions) are developed to understand current-

potential (i-E) relationships. The i-E relationship can be rigorously derived by applying 

Dirac’s time-dependent perturbation theory to Schrodinger’s wavefunction () of an 

electron and integrating the density of states for the electrolyte (detailed proof can be found 

in Fletcher et al.179). For most reactions, the reaction rate is expressed in the Butler-Volmer 

(BV) formulation, given as Equation 5.547:  

𝑖 = 𝑖0[𝑒−α𝑒𝑓𝑓𝑓(𝐸−𝐸0) − 𝑒(𝑛−α𝑒𝑓𝑓)𝑓(𝐸−𝐸0)] Equation 5.5 

where i0 is the exchange current density, eff is the transfer coefficient, f = F/RT, n is the 

number of electrons, E – E0 is the overpotential. If all of the electrochemical steps can be 

assumed to be reversible, the overall effective transfer coefficient is represented as:180  

𝛼𝑒𝑓𝑓 =
𝛾⃗


+ 𝜌𝛽 

Equation 5.6 

in which 𝛾⃗ is the number of electrons prior to the rate-determining step,  is the number of 

times the rate-determining step occurs, 𝜌 is either 0 (if the rate-determining step, RDS, is 

a chemical step) or 1 (if the RDS is an electrochemical step), and 𝛽 is 0.5. The Butler-

Volmer electrokinetic expression is typically valid in a very narrow regime where the free 

energy curves for oxidation and reduction are linear. However, the potential energy surface 

based on Marcus theory is represented by intersecting parabolas that account for the 

cumulative coordination energy between the initial and final states of the electrolyte. This 

model results in the Marcus-Hush-Chidsey (MHC) relationship between the current and 

overpotential, which is given below:181 
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iox /red 
MHC (λ, η)=A  ∫ exp (-

(x-λ±eη)2

4 λ
)  

dx

1+ exp(x)

∞

∞

 
Equation 5.7 

In Equation 5.7, λ is reorganizational energy normalized to the thermal voltage, 

and η = e(E − E0)/kBT. The Fermi distribution of the electronic energy upon an applied 

potential is accounted for in the MHC framework by integrating x = (εe1 − eE)/kBT. The 

pre-exponential factor (A) accounts for the strength of the electronic coupling and density 

of states.  Previous studies182 found that the Fermi distribution in the MHC is negligible 

(x = (εe1 − eE)/kBT), resulting in the low overpotential approximation for the Marcus-

Hush-Chidsey kinetic expression. Therefore, the MHC breaks down to a modified transfer 

coefficient to the Butler-Volmer expression and can be represented as a potential-

dependent property and as a function of the electrolyte reorganizational energy, Equation 

5.8.182     

αeff =
γ⃗⃗


+ ρ [ +

e(E − Eeq)

4λ
] 

Equation 5.8 

 

5.4 RESULTS AND DISCUSSION 

5.4.1 MECHANISTIC FRAMEWORK – KNOWN EC REACTIONS ON CARBON BASED ANODES 

The effective transfer coefficient can help researchers to elucidate the mechanistic 

pathway of the reaction and it is capable of decoupling multi-step reactions because it 

elucidates the nature of the RDS. For a generalized multi-step reaction that follows the 

form of A + ne- ⇌ Z, the RDS plays an essential role in the rate of reaction. Therefore, a 

multi-step reaction can be broken down into the number of electrons prior to the RDS and 

the number of electrons after the RDS to give a cumulative number of electrons of n. By 
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writing out every rate expression for every step of the pathway, the effective transfer 

coefficient can be derived and used for mechanistic insight (Table 5.1). 

Table 5.1. | Hypothetical generalized mechanism where n is the total number of e-, ⃗ is the 

number of e- before RDS, ⃖ is the number of e- after RDS, and  is either 0 (chemical) or 1 

(electrochemical) 180,183 

Generalized Reaction for: 
A + ne− ⇌ z 

# of electrons 

A + e− ⇌ B 1 

B + e− ⇌ C 2 

      …          

M + e− ⇌ N ⃗ 

N + e− ⇌ O ⃗ +  RDS 

O + e− ⇌ P ⃖ 

      …          

X + e− ⇌ Y n-1 

Y + e− ⇌ Z n 

 

 With the present theoretical framework for multi-step reactions, electroanalytical 

techniques can be applied to study the activation of EC on conversion electrodes. 

Numerous studies have applied high-level density functional theory (DFT) calculations for 

the reduction pathway of EC, which is the dominant reactant participating in the SEI 

formation step on carbon/graphite (Equation 5.9 to Equation 5.17).160,184,185 First, 

supermolecules of (EC)n and Li+ are formed during the electrolyte preparation step.   

nEC + Li
+ → (EC)n − Li

+
  Equation 5.9 

The supermolecules of Li+(EC)n then undergo a 2-electron decomposition reaction at the 

electrified surface. The 1st electron transfer step destabilizes the system to an ion-pair 

intermediate via homolytic C-O bond cleavage: 

(EC)𝑛 − L𝑖+ + e− → [(EC)−] − Li
+ − (EC)𝑛−1  Equation 5.10 

(EC)𝑛 − L𝑖+ + e- → (EC)n − Li  Equation 5.11 
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[(EC)−] − Li
+ − (EC)n−1 → H2ĊCH2(CO3)−Li

+−(EC)𝑛−1  Equation 5.12 

From here, the EC can further decompose to a lithium organic(R) dicarbonate (ROCO2Li)2 

where R can either be ethylene or butylene:  

2H2ĊCH2(CO3)−Li
+ − (EC)n−1

→ (EC)n−1 − L𝑖+(CO3)−(CH2)4(CO3)−Li
+

− (EC)n−1 

Equation 5.13 

2H2ĊCH2(CO3)−Li
+ − (EC)𝑛−1

→ (EC)𝑛−1 − L𝑖+(CO3)−(CH2)2(CO3)−Li
+

− (EC)n−1 + C2H4 

Equation 5.14 

An alternative decomposition reaction can occur at low EC concentrations via the 

formation of an unpaired carbonate nucleophile (LiCO3
-), which can react after the 1st 

electron transfer to either Li2CO3 or (CH2OCO2Li)2: 

H2ĊCH2(CO3)−Li
+ − (EC)n−1 + e-

→ (CO3)2−Li
+ − (EC)𝑛−1 + C2H4 

Equation 5.15 

(EC)𝑛 − Li
+ + (CO3)2−Li

+ − (EC)n−1

→ (EC)n − Li
+(CO3)2−Li

+ − (EC)n−1 

Equation 5.16 

(EC)𝑛 − Li
+ + (CO3)2−Li

+ − (EC)n−1

→ (EC)n−1 − Li
+(CO3)−(CH2)2(CO3)−Li

+

− (EC)n−1 + C2H4 

Equation 5.17 

Despite the plethora of experimental data that corroborates the EC reaction 

mechanism above for carbon (a detailed DFT study can be found in Wang et al.186), there 

is a demand to generalize the reaction mechanism on developmental-stage electrodes with 

higher energy densities or phenomenal reversibility. Therefore, this section attempts to 

bridge this gap by providing a systematic approach to deconvoluting the SEI reaction 
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mechanism on M-X anodes.  First, SEI formation is summarized on Vulcan XC-72R 

carbon.  Vulcan XC-72R provides a control case for SEI formation that is well-studied (i.e. 

carbon) where the result is well known – without interference from intercalation.  This is 

meant to validate the overall methodology, which is then extended to a representative M-

X material, NiO.  To my knowledge, this study contains the most comprehensive dataset 

and analysis for the SEI formation on M-X anodes, which has resulted in a much more 

complete understanding of the reaction mechanism as a function of SOC on this family of 

materials as well as a framework for others to apply to similar systems in the future.   

The SEI reaction mechanism and location of the electrolyte decomposition (inner 

or outer-sphere reaction) primarily occurs during the first charge. The charge curve for the 

first charge of Vulcan XC-72R (carbon control) is shown in Figure 5.2a.  The curve can 

be split into 3 regions (Arabic numerals: 1, 2, 3).  In Region 1, the charge is primarily 

stored via electric double layer (EDL) capacitance, though some of the current passed also 

contributes to electrolyte decomposition/SEI formation.  In Region 2, the behavior is 

dominated by charging the EDL.  Finally, Region 3 shows both EDL charge storage as well 

as extended capacity from electrolyte reduction. The diffusional transport properties 

extracted from galvanostatic intermittent titration technique show a stepwise decrease in 

the apparent diffusion coefficient (S2D) and are represented as the solid/dashed black lines 

in Figure 5.2a. Region 1 shows a gradual decrease in the apparent diffusion coefficient 

from 10-13 to 10-14 cm6 s-1. The electrolyte reduction process and formation of the SEI 

impede Li+ diffusion, resulting in an average diffusion coefficient that decreases as a 

function of the SEI film growth. The transition from Region 1 to Region 2 is reflected by 

a stabilization of the apparent diffusion coefficient, which corresponds well with the 
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inflection point of the OCP (i.e. transition from an electrochemical reaction (EC) that forms 

the SEI to a purely capacitive behavior). The transition between Region 2 to Region 3 is 

marked by a comparative extension in the capacity in the low potential range and the 

increase in the diffusional barrier. The stage-wise decrease in the diffusion coefficient 

captures a two-stage SEI formation process and this phenomenon elucidates some of the 

previous SEI-related literature (i.e. a porous SEI near the electrolyte interface and 

densification near the electrode surface).22 The apparent exchange current in Figure 5.2b 

captures the kinetics at different SOC. The V-shape curve for i0S is consistent with the 

potential response and delineation of Region 1-3. Region 1, which shows tendencies that 

are consistent with an electrochemical reaction with EDL charge storage. The delineation 

is reflected in the form of a higher exchange current in-comparison to Region 2, which 

comparatively shows similarities to subsequent cycles. The steep drop in the apparent 

exchange current in the transition from Region 1 to Region 2 marks the near completion of 

the first SEI formation process. At low potentials vs Li/Li+ the apparent exchange current 

increases significantly, which is a corollary to a secondary plateau or more specifically a 

secondary reaction. 

Linear sweep voltammograms taken in Region 1 and Region 3 during the first 

charge are plotted in Figure 5.2c.  In Figure 5.2c, experimental data are represented by 

semi-transparent dots, while Tafel curves are indicated by straight dashed lines and the low 

overpotential approximated MHC analysis is indicated by solid lines. The highlighted 

colors and labels in Figure 5.2c also show the constituent physical and/or chemical 

processes that primarily contribute to the LSV behavior in various potential regimes.  
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Figure 5.2. | Represents (a) charge/discharge curves for Vulcan XC-72R carbon black, (b) 

Tafel-like plots with Butler-Volmer (solid line) and Marcus-Hush-Chidsey (dashed lines) 

models on-top of experimental data (dots), and (c) illustration of the interfacial structure of 

carbon during initial charge stages and reaction mechanism as proposed by (Wang et al.186). 

The reaction mechanism designations are C = chemical step, E = electrochemical step, D 

= dimerization reaction, and a double line highlight the rate-determining step.  Reproduced 

with permission from The Royal Society of Chemistry.167 
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At low overpotentials, the quasi-reversible regime near the equilibrium potential is 

highlighted in blue. In this regime, reversible interfacial charge transfer occurs. At 

moderate overpotentials, highlighted in purple, linear Tafel behavior can be observed. At 

high overpotentials, highlighted in green, mass transfer limitations take over as the log(i) 

response deviates significantly from linearity181,182,187.  Calculations of eff and low 

overpotential MHC calculations of the reorganization energy () for Vulcan XC-72R 

carbon black are provided in Table 5.2. First, the reorganizational energy for Region 1 and 

Region 3 were found to be  = 0.33 eV   0.01 and 0.37 eV  0.01, respectively. The small 

reorganizational energy suggests that electrolyte reduction is controlled by electron transfer 

and not solvation/desolvation ion transport mechanisms that typically exhibit 

reorganizational energies above 0.5 eV.  The good agreement of the experimental data to 

the MHC model, combined with low reorganization energies, indicates that the SEI 

formation on carbon in this region is an outer-sphere electron transfer process.188   

 

Table 5.2. |Tafel calculations of eff for Vulcan XC-72R carbon black. 

 Region 1 Region 3 

eff 0.43  0.01 0.47  0.01 

 0.33 eV   0.01 0.37 eV  0.01 

 

5.4.2 MECHANISTIC ASSESSMENT OF EC ACTIVATION AND ORGANIC SEI FORMATION 

(REGION 1) 

As shown in Table 5.2, kinetic deconvolution of the LSV data yielded an eff of 

0.43 in Region 1.  From this value, it can be surmised that 𝛾⃗ = 0 and  𝜌 = 1, meaning that 

the rate determining step is the first electron transfer step. To ascertain the number of times 
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the RDS occurs, additional information is needed. Wang et al.186 proposed the reaction 

mechanism in Figure 5.2c for Region 1, which indicates a fast adsorption step followed by 

an activation step and a dimerization reaction to form organic Li2EDC and ethylene 

(translates to a  =  2). From their DFT calculations, they also proposed the 1st electron 

transfer step to be the rate-determining step.  In this region, the SEI formation is dominated 

by organic species formation because the bulk EC concentration (~7M) makes it highly 

available, with high surface coverage as well.  Even though surface mobility of activated 

EC is low due to steric hindrance, there is a boundless supply of EC in Region 1 prior to 

SEI formation.  In this region, the simultaneous ethylene evolution and Li2EDC formation 

enable the formation of the porous, organic portion of the SEI.   

5.4.3 MECHANISTIC MODEL FOR EC ACTIVATION TO INORGANIC SEI (REGION 3) 

During the first charge, Region 3 has an eff of 0.47, which again suggests that 𝛾⃗ =

0 and 𝜌 = 1.  However, by the time that the charge has reached Region 3, the surface is 

much different than it was in Region 1 since a significant portion of the porous, organic 

SEI (Li2EDC) has already been formed as discussed above. The existence of this porous 

layer, as opposed to a flat, open surface, also means that the reaction likely becomes EC 

mass transport limited184. Because the surface mobility of activated EC is low, the lower 

concentration of EC results in severely hindered dimerization due to lack of proximity 

between active species184.  Also, in Region 3, the anode potential is lower than it was in 

Region 1.  The combination of a high driving force and low EC concentration results in 

nucleophilic attack of neighboring Li-species, as shown in Figure 5.2c, which changes the 

formed reduction products from organic species to inorganic compounds such as Li2CO3.   
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In addition to the electroanalytical analysis, XPS was used to corroborate the 

reaction mechanism for SEI formation on carbon. High-resolution Li 1s, O 1s, and C1s for 

post-SEI formation on carbon are presented in Figure 5.2d. The Li 1s high-resolution 

spectrum captures one broad peak at 55.1 eV, which is difficult to deconvolute but 

characteristic of Li2CO3 (Eb ~ 55.2 eV), Li2O (Eb ~ 53.8 eV), LiF (Eb ~ 55.6 eV), and 

ROCO2Li (Eb ~ 54.7 eV).189–191 A deconvolution of the O 1s high-resolution spectrum 

indicates the presence of C-O, C=O functionalities (Eb ~ 531.7 eV), and possible O-H (Eb 

~ 533.5eV). Also, a shoulder corresponding to the formation of Li2O is observed at 528.5 

eV. The C 1s spectrum contains a convoluted set of peaks that are consistent with 

carbonate/CFx (Eb ~ 289.9 eV), O-C=O (Eb ~ 288.4 eV), C-O (Eb ~ 284.6 eV), and carbide-

related species (Eb ~ 283.7 eV). The observed CFx binding energies are expected and 

related to the PVDF binder. The remaining peaks correspond to compounds in the SEI and 

conductive carbon and are consistent with the known products for SEI formation on carbon, 

including lithium alkyl carbonates (e.g. ROCO2Li) in Region 1 and Li2CO3 in Region III. 

5.4.4 SUMMARY OF SEI FORMATION ON CARBON 

The potential and concentration dependence of the SEI formation process can 

therefore be broken down into three primary regions on the carbon control. In Region 1, 

the extended reaction plateau at 0.93V and the non-existent reaction plateau in the 

subsequent cycles can be used to decouple the two charge storage mechanisms, EDL 

charging and SEI formation. The SEI formation process can then be further deconvoluted 

via electron transfer theory to yield an effective transfer coefficient (eff = 0.43) that 

corroborates the reaction pathway of highly concentrated EC to the organic-phase SEI 

(either (CH2CH2OCO2Li)2  or (CH2OCO2Li)2). In Region 2, the potential profile resembles 
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characteristics of subsequent cycles and indicates charge storage that is consistent with 

EDL storage (i.e. no definitive reaction plateau). As the charging reaches Region 3, an 

extended reaction plateau at <0.3V is observed and corroborates the widely accepted 2nd 

reaction pathway of the SEI. A further deconvolution of Region 3 reveals an effective 

transfer coefficient of 0.47, which leads to the observation that the 1st electron transfer step 

is the rate-determining step.  These findings agree with the widely-accepted literature 

pathway for SEI formation, where EC reduction leads to the Li2CO3-rich19,160,184 Though 

this first section is a validation of already-published work, it is included here to provide a 

baseline for comparison with the true system of interest in this work: M-X species.  The 

results above show that the mechanistic framework shown here is fully capable of 

deconvoluting the complex multi-step reaction pathway of the primary active electrolyte 

species (EC) – meaning that it can be extended to M-X species with a high chance for 

success.  

5.4.5 SOLID ELECTROLYTE INTERPHASE ON CONVERSION METAL OXIDE 

After confirming the plausibility for the DFT-proposed reaction mechanisms by 

Wang et al.192,193 and the experimental observations by Aurbach et al.184 for SEI formation 

on the control-carbon electrodes in this study, the methodology was then extended to M-X 

conversion anodes, specifically using NiO as a representative material. Figure 5.3a shows 

the galvanostatic intermittent titration technique (GITT) results for the open circuit 

potential (OCP) and diffusivity (S2D) for NiO as a function of the state of charge (SOC) 

during the initial charge (solid lines) and discharge (dashed lines).  The apparent exchange 

current as a function of SOC during the initial charge (solid line) and discharge (dashed 

line), also from GITT, is shown in Figure 5.3b.  Because SEI formation occurs during the 
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1st charge, that will be the focus of the discussion.  From the trends in the data, four regions 

(denoted by Roman numerals: I, II, III, IV) could be identified.   

In Region I (OCP > 1 V), the initial reaction occurs at the solid/liquid interface, 

which is indicated by a high apparent diffusion coefficient (10-8 – 10-9 cm6 s-1) and the 

lowest exchange current, ca. 2x10-5 A. By the end of Region 1, the apparent diffusion 

coefficient decreased to 10-10 cm6 s-1, while the apparent exchange current increased 

slightly to ca. 2.5x10-5 A. In Region II (0.7 < OCP < 1 V vs. Li/Li+, 72 < Q < 610 mAh g-

1), the apparent diffusion coefficient was fairly stable (~10-11 cm6 s-1) and its magnitude is 

characteristic of solid-state diffusion, most likely lithium ions through the porous SEI and 

active metal oxide particles. Concurrently, the apparent exchange current continuously 

increased to ca. 5.0x10-5 A. In Region III (0.5 < OCP < 0.7 V vs. Li/Li+, 610 < Q < 790 

mAh g-1), there was an increase in the apparent diffusion coefficient from ~10-11 to ~10-9, 

which indicates a possible transition in the diffusion mechanism from purely solid-state 

diffusion back to a combination of solid-state + liquid-state phase diffusion. The most 

likely reason for this phenomenon can be attributed to slight volumetric expansion as well 

as the phase segregation of Ni-metal + Li2O domains, which exposes the additional active 

material surface to the electrolyte (visual evidence will be discussed later along with 

Figure 5.3c). However, the exchange current was not changed in this Region.  In Region 

IV (0 < OCP < 0.5 V vs. Li/Li+, Q > 790 mAh g-1), there was a rapid drop in the apparent 

diffusion coefficient from (10-9 to 10-12), suggesting a transition from a mixed solid-

state/liquid-state diffusion back to a purely solid-state mechanism.  
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Figure 5.3. | Depicts galvanostatic intermittent titration technique for the parameter 

extraction of (a) apparent diffusion coefficient and (b) the apparent exchange current. Both 

plots contain the open circuit potential of NiO marked in (blue). Each section contains a 

dot that indicates locations where linear sweep voltammetry is done. Four sections are 

broken down (I, II, III, IV) to delineate dominant mechanisms. Also, high-resolution 

transmission electron microscopy is depicted as (c) TEM of post-cycled NiO. The atomic 

resolution HRTEM is depicted in (d) for the Ni domain (~2.1Å[111], ~1.8Å[200]) and (e) 

for the NiO domain (2.4Å[111], 2.0Å[200]). The Fast Fourier Transform (FFT) analysis of 

the HRTEM (f) for Ni and (g) for NiO. (h) Depicts the schematic for NiO particle 

transformation and showing the conversion reaction front propagation for the particle-level 

HRTEM image in Figure 5.3c (i.e. lithiation propagates from the bulk electrode until the 

reaction front stops due to high local polarization (i.e. the electrical losses generate a 

termination distance) and resulting in trapped charge). Reproduced with permission from 

The Royal Society of Chemistry.167 
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The rapid drop in the diffusion coefficient in combination with an overpotential in-

proximity to Li/Li+ is consistent with the 2nd stage of SEI formation in carbon electrodes, 

which included densification and a transition from organic to inorganic electrolyte 

decomposition products.  A HRTEM image of a partially charged NiO particle is shown in 

Figure 5.3c.  The image captures a moving phase boundary between the charged state and 

the discharged-state that does not begin homogenously at the surface and move inward, a 

so-called shrinking core model, as might be initially expected.  Instead, evidenced by a 

distinct lateral phase boundary in the particle, the particles begin their charge from the side 

of the particle closest to the current collector/substrate and the reaction plane moves from 

that side of the particle to the other.  By zooming in at higher magnification, atomic 

resolution images are captured for both the charged Ni (Figure 5.3d) and discharged NiO 

(Figure 5.3e) domains within the particle. The corresponding fast Fourier transform (FFT) 

is also shown below the HRTEM images for both phases. The FFT deconvolution shows 

two distinct lattice fringes neighboring the phase boundary with lattice constants of 2.0 Å 

[200]  and 2.4 Å [111] corresponding to planes of NiO in Figure 5.3f, and 2.1Å [111]  and 

1.8Å [200]  corresponding to Ni-metal in Figure 5.3g. The anisotropic 

lithiation/delithiation behavior of the conversion reaction suggests that the reaction front is 

controlled by electronic conductance (the charge does result in the formation of metallic 

Ni particles, which have high conductivity).  This seems to confirm previous work showing 

that the charge/discharge efficacy of metal oxide anode materials is strongly dependent on 

the intra-particle and inter-particle conductivity.34,45   

Figure 5.4 applies Tafel and MHC electrokinetic models to LSV data taken in each 

Region during the first charge, as was done for carbon in the previous sections, to better 
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understand the reaction mechanism during SEI formation. In all Regions, the Tafel and 

MHC descriptions capture the near linear log(i) response with reasonable agreement, and 

the resulting effective transfer coefficients and reorganizational energies are shown in 

Table 5.3. Even with the simplification of the MHC used here, the model is in good 

agreement with the data, suggesting that the Fermi distribution and EDL have a negligible 

contribution to the kinetic behavior in this system. Also, symmetry in the data indicates 

that an electron transfer step is rate-limiting, and not ion transport through the EDL or the 

prematurely formed SEI, even though some studies have suggested that desolvation of Li+ 

from the electrolyte into the SEI may be rate-limiting.194 Typically, desolvation requires 

reorganizational energies greater than 0.5 eV.  

 

 

Figure 5.4. | Represents Tafel-like plots for Butler-Volmer (solid line) and Marcus-Hush-

Chidsey (dashed lines) models on-top of experimental data (dots). Reproduced with 

permission from The Royal Society of Chemistry.167 
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Table 5.3. | Effective transfer coefficient calculated by Tafel slope and reorganizational 

energy calculated by the low overpotential approximation for the Marcus-Hush-Chidsey 

theory  

 I II III IV 

eff 0.41  0.01 0.55  0.02 0.58  0.01 0.67  0.02 

 0.23 eV  0.01 0.28 eV  0.01 0.30 eV  0.01 0.38 eV  0.01 

 

Since Marcus theory188 was originally derived for outer-sphere electron transfer 

reactions, the reorganizational energy indicates the reduction of EC at the outer Helmholtz 

plane. The interfacial interaction of the electrolyte and the electrode can be deconvoluted 

from the reorganization energy in the MHC model and studied at different SOC to provide 

a temporal view of the electrode/electrolyte interaction across the entire reaction 

coordinate. From the beginning to the end of the first charge, Region I→II→III→IV,  

continuously increased from 0.23 to 0.38. Since  is an indicator of the energy required to 

reorganize the electrolyte, differences in this value can elucidate surface interactions.  The 

fact that electrolyte reorganization energy increased from low SOC to high SOC suggests 

that the interface is altered by the SEI formation and it is likely that the ion-pairing between 

Li+ and solvent dipoles or PF6
- anions become stronger at higher SOC (i.e. the coordination 

level increases or ion-pairing changes). In comparison, the reorganizational energy on 

carbon is higher than on NiO at low SOC (C = 0.33 eV  0.01 in Region 1 vs NiO = 0.23 

eV   0.01 for Region I), which means the transfer of charge on an oxide surface is initially 

more facile on NiO.  This could be due to a catalytic effect, since the surface area of C (250 

m2/g) vs. NiO (80.4 m2/g) is drastically different, though this needs to be probed more 

deeply in the future.  However, as the electrolyte decomposition proceeds to a more mature 

stage, the reorganization energies (and hence the electrolyte-SEI interaction) become 
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statistically identical (C = 0.37 eV  0.01 in Region 3 vs NiO = 0.38 eV   0.01 for Region 

IV), which suggests that the advanced SEI/electrolyte interfaces are likely similar. 

5.4.6 MECHANISTIC ASSESSMENT OF EC ACTIVATION ON CONVERSION MATERIALS 

(REGION I) 

Because two processes are occurring simultaneously during the first charge, both 

the conversion reaction and SEI formation, isolating the process of interest can be difficult 

and requires several pieces of experimental data to be systematically pieced together to 

generate a full understanding.  Based on the effective transfer coefficient in Region I, and 

the consistency to Region 1 in carbon, the analysis strongly suggests that the reaction 

pathway for the reduction of EC to (ROCO2Li)2 also occurs on NiO.  The effective transfer 

coefficient results are also fully consistent, with the value of the eff indicating that the 

reaction is again rate-limited by the 1st electron transfer (𝛾⃗ = 0, 𝜌 = 1). Here, Li+(EC)n 

supermolecules are rapidly adsorbed onto the active material, followed by activation and 

dimerization to Li2EDC and ethylene.  Again, the lower reorganization energy for this 

initial process does suggest possible catalytic decomposition in the early stages of SEI 

formation on the NiO surface, which requires future study.   

5.4.7 BEHAVIOR IN REGIONS II AND III 

The effective transfer coefficient in Regions II and III were very similar (eff = 0.55 

for Region II and eff= 0.58 for Region III). In-combination with the behavior of the 

apparent diffusion coefficient as discussed above and the apparent exchange current 

density, the behavior in these two Regions appears to correspond primarily to the 

conversion reaction (Ni2+O2- + Li+→ Ni0 + Li2O), not SEI formation.  Palmieri et al. 
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proposed a reaction mechanism based on thermodynamic arguments and behaviors 

consistent with the observations here.34 Because it is not expected that significant SEI 

formation occurs in Regions II and III, they will not be extensively discussed here as their 

dynamics fall outside of the focus of this work.   

5.4.8 MECHANISTIC MODEL FOR EC ACTIVATION ON CONVERSION MATERIALS (REGION 

IV) 

XPS chemical analysis was performed to guide the mechanistic deconvolution of 

Region IV, which also is comprised of responses from multiple reactions.  

 

Figure 5.5. | High-resolution XPS spectra of (a) pre-cycled and (b) post-cycled NiO 

electrodes in the Ni 2p, C 1s, and O 1s spectra. Reproduced with permission from The 

Royal Society of Chemistry.167 
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Figure 5.5a shows a high-resolution XPS spectrum for pre-cycled NiO in the Ni 2p 

spectra, which shows characteristic (872.5eV) 2p1/2 and (854.3eV) 2p3/2 with an 18.2 eV 

displacement from the split spin-orbit of nickel oxide (NiO). Satellite peaks for Ni 2p1/2 at 

872 eV and Ni2p3/2 at 862 eV can be observed as well. After being cycled (100x), the Ni 

2p spectra (Figure 5.5b) indicates the presence of mixed oxidation states between Ni2+ and 

Ni3+ that is characteristic of Ni2O3, NiF2, Ni carbide, and Nickel carbide species at Ni 2P3/2 

binding energies of 858 eV, 855.5 eV, and 849.7 eV, respectively. 

In the pre-cycled C1s spectrum, responses were observed from C=C (Eb ~ 

284.6eV), C-C/C-H (Eb ~ 285.5 eV), C-O (Eb = 286.7eV) , O-C=O (Eb ~ 288.3 eV), and -

CO3- (or PVDF at Eb ~290.0 eV) species. In addition, the π- π* shakeup satellites were 

observed at Eb ~ 291.8 eV. The high resolution pre-cycled C 1s spectrum shows 

functionalities for PVDF and carbon black. The post-cycled C 1s spectrum reveals a 

significant increase in -CO3- functionalities at Eb ~ 289.5 eV. O-C=O (Eb ~283.3 eV), C-

O (Eb ~286.1 eV), and C=C (Eb ~ 284.6 eV) were also observed, which correspond to the 

typical SEI components discussed for carbon, including Li2CO3 and Li(CO3)-R-(CO3)Li. 

Finally, a noticeable shoulder peak was observed at Eb ~ 283.0 eV, which corresponds to 

the formation of carbides and corroborates the Ni 2p peak at 849.7 eV.  

The pre- and post-cycled high-resolution XPS spectra for O 1s are also shown in 

Figure 5.5. The O1s XPS spectrum for the post-cycled electrode shows the presence of 

C=O (Eb ~ 533.5 eV) and C-O bonds (Eb ~ 532.2 eV), which corroborates the C1s spectrum 

for the formation of Li2CO3. Additional lithium alkyl carbonate species (R-CH2O 

(C=O)OLi (Eb ~ 532.2 eV) and R-CH2O(C=O)OLi (Eb ~ 533.5 eV) were also identified 
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during the deconvolution. A less pronounced peak for Ni2O3 (Eb ~ 530.3) was observed 

from the peak shoulder at 530.3 eV.  

By coupling the XPS results with electroanalytical analysis of the RDS, it is 

possible to decouple the controlling processes in the reaction mechanism. There is a 

discrepancy in the effective transfer coefficient when comparing Region I to Region II/III 

and to Region IV. Like SEI formation on the carbon black control, eff was ~0.4.  For 

carbon, the transfer coefficient is almost independent of the SOC, but for NiO eff increased 

with the SOC from 0.41 to 0.67, suggesting a deviation in the reaction mechanism.  More 

specifically, in Region IV the observed effective transfer coefficient is an amalgam of the 

competition between the SEI formation and the conversion.  From previous work34, it is 

known that the transfer coefficient for the conversion reaction is around 0.5.  This means 

that the large positive deviation in the measured eff must come from a process whose 

transfer coefficient is > 0.5 and the only other process occurring is the latter stages of SEI 

formation, which is discussed below.   

As the conversion and SEI formation simultaneously occur, there is likely depletion 

of Li+ reactants near the anode surface.  This phenomenon does not affect the conversion 

due to the fact that the Ni+ transition state formed during the RDS is unstable and all the 

subsequent steps are relatively facile (i.e. the dissociation step and formation of Li2O is 

highly thermodynamically favorable).  However, electrolyte reduction in its latter stages, 

just like carbon, relies on the reaction of free electrolyte that is trapped inside of the pore 

space formed during reaction in Region I.   When this happens, the reaction is not just 

limited by surface activated electrolyte species, it also encounters a deficiency in Li+ ions 

that may be abstracted to form Li2CO3.  This abstraction is energetically uphill, and if it 
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becomes controlling, this chemical step would be the RDS and the resulting transfer 

coefficient would be 1 (𝛾⃗ = 1,  =  1, 𝜌 = 0) and fully consistent with all of the 

experimental observations in this work.   

 

Table 5.4. | Mechanistic insight in the reaction pathway for Region IV (2.2 < x < 2.8), 

showing chemical (C) and electrochemical (E) steps.   

MO Reaction mechanism(𝑪𝑬̿𝑪𝑪𝑬) Process 

𝑆𝐸𝐼 − 𝐿𝑖+ ⇋ 𝑆𝐸𝐼 + 𝐿𝑖+  Li+ Dissociation from 

SEI C 

𝑀𝑂 + 𝐿𝑖+ + 𝑒− ⇋ 𝑀𝑂 − 𝐿𝑖+ 1st electron transfer E 

𝑀𝑂 − 𝐿𝑖+ ⇋ 𝑀+ + 𝐿𝑖𝑂− Dissociation C 

𝐿𝑖 + + 𝐿𝑖𝑂− ⇋ 𝐿𝑖2𝑂 Li2O recombination C 

𝑀+ + 𝑒− ⇋ 𝑀0 2nd electron transfer E 

EC Reaction mechanism (𝐂𝐄𝑪̿𝑬) Process 

(𝐿𝑖+ − 𝐸𝐶) + M ∗⇋ M ∗ −(𝐿𝑖+ − 𝐸𝐶) Adsorption in open 

pore C 

M ∗ −(𝐿𝑖+ − 𝐸𝐶) + 1𝑒− ⇋ M ∗ −𝐿𝑖+ − 𝐸𝐶− EC activation E 

 𝑆𝐸𝐼 − 𝐿𝑖+ ⇋ 𝑆𝐸𝐼 + 𝐿𝑖+  Li+ Dissociation from 

SEI C 

M ∗ −𝐿𝑖+ − 𝐸𝐶− + 1𝑒− + 𝐿𝑖+

⇋ M ∗ −𝐿𝑖2𝐶𝑂3(𝐼𝑜𝑆𝐸𝐼)  + 𝐶2𝐻4 
Li2CO3 formation E 

 

 

5.4.9 PHYSICAL STRUCTURE OF THE SEI ON NIO 

Figure 5.6a shows TEM images of the mesoscale-scale structure of the post-cycled 

NiO.  Compared to pre-cycled NiO, significant structural changes were observed. Some 

were expected, such as particle agglomeration – leading to a loss of distinguishable 

boundaries between particles. Also observed was the non-uniform deposition of SEI 

components onto the surface of the active material.  In fact, NiO and SEI components were 

found to preferentially cluster, leading to fully agglomerated regions and partial vacancies 

in the SEI that can be areas for high reactivity.  
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Figure 5.6. | Transmission electron microscopy was used in (c) which represents the post-

cycle surface mesostructure and highlights high anisotropy in SEI formation, (d) high 

resolution of the SEI, (e) energy-dispersive X-ray spectroscopy, and elemental mapping of 

the SEI. Reproduced with permission from The Royal Society of Chemistry.167 

 

High-resolution TEM images in Figure 5.6b show two regions in the SEI with 

multiple particles embedded into the SEI matrix.  HAADF and EDS elemental mapping in 

Figure 5.6c suggest that the SEI’s elemental composition consists of C, O, F, P, and Ni, 

confirming constituents of Li2CO3, Li(CO3)R(CO3)Li, LiF, trapped-Ni, etc. Also, from 

elemental mapping, Ni clusters appear to be enveloped inside of the electronically 

insulating SEI. This indicates a possible aging mechanism that involves metals becoming 

trapped and detached from the bulk electrode.  This metal-trapping mechanism leads to the 

active material becoming stuck in the charged state, reducing the achievable capacity. It 

also can sacrifice the mechanical integrity of the SEI later itself, which relates back to the 
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GITT results, where the apparent diffusion coefficient increased near the end of Region III.  

What is likely occurring is that the volumetric changes from the conversion reaction, 

coupled with the formation of the SEI forcing some particles off the surface, temporarily 

increase the porosity of the newly-formed SEI, allowing a different mode of transport (fully 

solid-state to liquid phase diffusion) to be active. 

5.5 SUMMARY 

First, characteristic regions were isolated for conversion-based MOs anodes based 

on the thermodynamic, kinetic, and transport properties at different SOC. The reaction 

mechanisms were isolated for each region and revealed very similar characteristics to the 

SEI formation process in Region 1 on carbon and Region I on MO. Unlike carbon, where 

only SEI formation and EDL storage were observed, MOs store charge via bond-breakage, 

which dominated the response for Regions II and III.  The conversion reaction mechanism 

also occurs extensively in Region IV; however, increased driving force for SEI formation 

(lower potential) leads to a competition between the two reactions that revolves around the 

Li+ dissociation from the SEI.  This results in a shift in the Tafel slope and the RDS for SEI 

formation from an electrochemical step to a chemical step with an eff = 1.  Cumulatively, 

it can be surmised that the SEI formation on M-X materials appears to initiate identically 

to carbon, though some surfaces may show a catalytic effect that needs to be studied 

further.  However, the final stages of SEI formation, though they result in very similar 

inorganic products, appear to diverge mechanistically.   
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CHAPTER 6: AVOIDING THE SOLID ELECTROLYTE INTERPHASE 

DEGRADATION MECHANISM IN NEXT GENERATION 

CONVERSION ANODES 

The fundamental reaction mechanism to the formation of the SEI and the 

conversion reaction has been discussed in depth in Chapter 5 and this Chapter will take the 

study one step further to study the long-term effects of conversion metal oxides (e.g. 

cyclability, reaction reversibility, coulombic efficiency, chemistry) and methods to bypass 

these degradative processes. Recall from Chapter 1, metal oxides (MOs)  typically suffer 

from intrinsically low electronic conductivities (10-8 – 10-3 Ω-1 cm-1)195 and display several 

degradation mechanisms that are inherent to their chemistry. First, if the structure and 

electronic conductivity of the local environment are not well controlled, the base metal (M) 

and Li2O reaction products can phase separate, resulting in the trapping of the active 

material in the charged state, rapidly lowering the capacity during cycling196–198.  Second, 

there is an entropic penalty associated with the repetitive restructuring and collapse of the 

parent host (MO→M + Li2O)198–200, which can lead to the growth of larger particles and 

phase segregation to minimize surface free energy.  Third, there can be the continued 

growth of the SEI due to physical changes in the electrode during charge/discharge,201–205 

which can reduce the electrode capacity during cycling through both increased irreversible 

capacity loss as well as particle detachment and metal trapping within the SEI85,189,206,207.  

Finally, through reaction either with excess electrolyte or the SEI, MOs undergo a side 
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reaction that forces them to higher oxidation states during their lifetime – a reaction that 

lowers their achievable coulombic efficiency (but not their achievable capacity since the 

reaction does not consume Li)42.  In combination, these four degradation mechanisms have 

often significantly limited the performance and lifetime of MO-based anode materials and 

have led to their exclusion from cells of commercial interest.   

Therefore, Li-ion cells employing MO anodes must overcome the low (particle-

level) and long-range (electrode-level) electronic conductivity problems, long-term phase 

segregation, and irreversible capacity loss due to uncontrolled overgrowth of the SEI.  One 

possible approach is physically confining the MO from the electrolyte in a highly 

entangled, high-aspect-ratio conductive matrix (e.g. high crystallinity carbon nanotubes), 

which has the potential to significantly reduce the effects of all the “inherent” degradation 

mechanisms listed above – increasing their cyclability and coulombic efficiency – and limit 

irreversible capacity loss in the first cycle.  Doing so with a low loading of the conductive 

material (~10%) can provide a practical pathway forward for these materials – resulting in 

a low cost, long-life, high-rate active material with no Li plating during fast charge, which 

would have a significant impact on the LIB technology.  This chapter will provide the first 

steps in this direction – using NiO confined inside of carbon nanotubes (NiO@CNT) as a 

proof-of-concept.  The physical and electrochemical properties of the NiO@CNT material 

will be investigated.  It will be shown that nano-confinement is a convincing panacea to 

eliminate the existing degradation pathways, allowing for these materials to be extensively 

cycled with full material utilization and fast-charged.  
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6.1 EXPERIMENTAL 

6.1.1 REAGENTS 

Multi-walled carbon nanotubes (CNTs) (average D = 10 nm, P/N 412988 and 

average D = 50 nm, P/N 901002), Pluronic P123 triblock copolymer (PEG-PPG-PEG, Mn 

~ 5800), tetraethyl orthosilicate (TEOS, >99.0%), hydrochloric acid (HCl, ACS reagent 

grade, 37%) and nitric acid (HNO3, ACS reagent grade, 70%) were purchased from Sigma 

Aldrich. Nickel (II) nitrate hexahydrate (Ni(NO3)2-6H2O, 99%) and potassium hydroxide 

(NaOH) were purchased from Acros Organics through Fisher Scientific. Vulcan XC-72R 

was purchased from Cabot. The CNTs were purified with an acid treatment and high-

temperature defunctionalization (detailed in Section 2.2). Li(Ni0.5Mn0.3Co0.2)O2 powder 

was purchased from MTI corporation. Ultrapure deionized water (18.2 MΩ cm) was 

supplied by a lab-scale Millipore Milli-Q Integral system with E-POD. All other chemicals 

were used as received. 

6.1.2 SYNTHESIS OF NIO/C, ID-NIO/CNT, AND NC-NIO@CNT 

Three unique NiO-carbon composite materials were synthesized: (1) unconstrained 

deposition of NiO on the surface of carbon black (Vulcan XC-72R), which will be denoted 

as NiO/C; (2) NiO indiscriminately deposited on both the inside and outside of CNTs, 

denoted as ID-NiO/CNT; and (3) NiO nano-confined exclusively on the inside of CNTs, 

denoted as NC-NiO@CNTx (where x = the CNT diameter in nm).   

NiO/C was synthesized through a mesoporous silica (SBA-15) template-assisted 

synthesis. First, the SBA-15 template was produced using the same procedure as previous 

publications.33,177,178 In a typical synthesis, 6g of Pluronic P123 and 13.6 mL TEOS was 
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first dissolved in 180mL of 2M HCl solution and successively heated at 45oC (20 hours) 

and 100oC (24 hours). The resulting SBA-15 template was washed with a DI water/ethanol 

mixture and dried under a vacuum. The dried SBA-15 was then calcined in air at 500oC for 

3 hours. Next, 500 mg of nickel nitrate hexahydrate was dissolved to create an aqueous 

0.5M Ni(NO3)2 solution. The solution was added dropwise to the SBA-15 until a ratio of 

6.3 mL/gSBA-15 was obtained. The Ni(NO3)2/SBA-15 gel was magnetically stirred and then 

calcined in air for 3.5 hours at 400oC.  The resulting powder was immersed into an aqueous 

5M KOH solution for 12 hours at 100oC to etch away the SBA-15 template. The 

supernatant was disposed of, and the remaining solids were rinsed three times with excess 

DI water, centrifuged at 4500rpm using a Sorvall ST-8 centrifuge, and then dried for 8 

hours at 70oC under vacuum. Finally, the templated NiO was added to a mortar along with 

Vulcan XC-72R in a 7:1 mass ratio and ground with a pestle for 30 minutes.  

ID-NiO/CNT was synthesized by dispersing 200 mg of CNT50 into 20 mL nitric 

acid with a magnetic stirring rod. The CNT50 dispersion was refluxed at 120oC for 30 

minutes to purify the CNTs, which also opened their closed-ends. Next, the CNT50 

dispersion was diluted slowly under magnetic stirring with a total of 80 mL of DI water. 

The diluted dispersion was then transferred to a 50 mL centrifuge tube and the solids were 

separated by centrifugation at 4500 rpm for 10 min.  After decanting the liquid, an 

additional 40mL of DI water was added to the centrifuge tube, which was then sonicated 

and centrifuged (repeated three times with the liquid being decanted off each time).  The 

solids were vacuum dried at 70oC for 24 hours and defunctionalized for 4 hours at 1500oC 

in a tube furnace under an Argon atmosphere to ensure high CNT crystallinity.  Next, 30 

mL of a 10M nickel nitrate hexahydrate (Ni (NO3)2 · 6 H2O) in 70% nitric acid solution 
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was prepared by stirring for 1 h. 100 mg of the defunctionalized CNT50 was added to the 

solution and refluxed at 120oC for 12 hours.  The solid precipitate was vacuum filtered 

with a G2-grade glass fiber membrane (Fisherbrand) in a Büchner funnel, vacuum dried at 

70oC for 24 hours, and then placed in a tube furnace and heated to 450oC for 4 hours under 

Argon atmosphere. The final ID-NiO/CNT was obtained after grinding with a mortar and 

pestle for 30 minutes to break up any agglomerates. 

NC-NiO@CNTx anodes were synthesized by dispersing 200 mg of CNTx into 

20mL of 70% nitric acid under continuous stirring.  The CNT dispersion was refluxed at 

120oC for 30 minutes. The temperature was reduced to room temperature and then slowly 

diluted with 80mL of DI water. The diluted dispersion was centrifuged at 4500 rpm for 10 

minutes, then decanted and refilled with 40mL of DI water, and finally sonicated. The 

process was repeated three times. The supernatant was removed, and the remaining CNTx 

solids were dried at 70oC for 24 hours under vacuum. The dried solids were thermally 

treated and defunctionalized for high CNT crystallinity in a tube furnace under continuous 

Argon flow for 4 hours at 1500oC. The samples were re-dispersed in a 30mL 70% nitric 

acid and 10M Ni(NO3)2 solution. Then, the 10M Ni(NO3)2-CNTx solution was refluxed for 

12 hours at 120oC to allow for complete permeation of the nickel precursor into the CNTx. 

After filtration with a G2-grade glass fiber filter, the samples were dried under vacuum at 

70oC for 24 hours and pyrolyzed at 450oC for 4 hours under continuous Argon flow.  300 

mg of the pyrolyzed solids were dispersed in 50 ml of 0.25M nitric acid and stirred for 1 

hour. The remaining solids were collected by vacuum filtration with G2-grade glass fiber 

circles in a Büchner funnel (the liquid filtrate was bluish-green), dried under vacuum at 

70oC for 24 hours, and then heated in a tube furnace at 450oC for 2 hours in an Argon 
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atmosphere. The final NC-NiO@CNT50 (i.e. CNTs with 50 nm diameter) and NC-

NiO@CNT10 (i.e. CNTs with 10 nm diameters) active materials were obtained after 

grinding with a mortar and pestle for 30 minutes. 

6.1.3 ELECTRODE FABRICATION AND COIN CELL ASSEMBLY 

NiO/C, ID-NiO/CNT, and NC-NiO@CNTx anodes were prepared by mixing 95% 

active material with 5% polyvinylidene fluoride binder (PVDF, Kynar Blend). A transfer 

micropipette was used to measure 400 µL of N-methyl-pyrrolidone (NMP, Acros, 99.5% 

Extra Dry) solvent, which was used as a dispersing agent for 100 mg of total solids to 

obtain an anode ink with moderate viscosity. The final ink was obtained after 

homogenization by 3 rounds of sonication (20 minutes) and continuous stirring (8 hours). 

The homogenized ink was uniformly sprayed onto a 50 µm thickness Cu current collector 

(Alfa Aesar, Catalog No. AA42972FI) with an Iwata-Medea Eclipse HP-CS sprayer. The 

resulting electrodes were dried in a vacuum oven at 75oC for 24 hours, pressed at 1500 lbs 

with a hydraulic press (MTI 5T Max. Manual Mechanical Press), and calendared (MTI 

Electric Roller-MSK-MR100DC). Electrodes used in half-cell studies had an active 

loading between 0.5 and 1.5 mg cm-2.  Full cells had a higher target anode mass loading of 

5 mg cm-2 and the cathode target mass loading was 18 mg cm-2.  (target N/P ratio ~ 1.1).  

The full cell cathode active material:carbon:binder ratio was 8:1:1.   

Coin cells were assembled in an argon (Ar, UHP Praxair) filled glove box (O2 and 

H2O < 0.1 ppm, MBraun Labmaster SP) in a half cell configuration with a Li metal 

counter/reference electrode. All electrochemical tests were conducted with CR2032 coin 

cells (Hohsen Corp.), 1.5 cm diameter lithium metal (99.9%, Alfa Aesar) counter 

electrodes, Celgard 2320 tri-layer PP/PE/PP membrane separator, and 1M lithium 
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hexafluorophosphate (LiPF6, Acros 98%) salt in a 1:1:1 volumetric mixture of ethylene 

carbonate (EC, Acros 99+%): dimethyl carbonate (DMC, Acros 98+%): diethyl carbonate 

(DEC, Acros 99+%) electrolyte. A typical coin cell assembly began with a lithium counter 

electrode centered and flattened onto the coin cell base. A micropipette was used to transfer 

15 µL of electrolyte to both sides of the Celgard separator, which was then placed, centered, 

onto the lithium electrode. The gasket was placed to position the working electrode (NiO/C, 

ID-NiO/CNT, NC-NiO@CNTx) directly in the center of the assembly. The spacer disk, 

spring, and the anodic cap of the coin cell were placed on top and the cell was finished by 

crimping with an MTI hydraulic press (MSK-110) to a pressure of 750 PSI. All sealed coin 

cells were inspected and safely transferred out of the glove box for electrochemical testing.  

To assemble the high loading full cells, the anodes were first prelithiated to control 

the state of charge of anode upon assembly and to avoid any irreversible capacity loss in 

the initial cycles.  The anode electrode was prelithiated by first immersing the electrode in 

a 1:1:1 EC: DMC, DEC, 1M LiPF6 electrolyte for 72 hours to allow for full electrolyte 

penetration.  Then, the anode was cycled in the same electrolyte 10 times between 0.001 

and 3.0 V versus a Li foil.  The first cycle rate was C/20 and subsequent cycles were 1C. 

Then, the prelithiated anode (5.16 mg cm-2) was paired with a Li(Ni0.5Mn0.3Co0.2)O2 (18.23 

mg cm-2) cathode using the same procedure as the half-cell experiments.  Before cycling, 

full cells were aged for 48-hours at 40oC inside a Tenney temperature control chamber to 

allow the electrolyte to fully permeate into the electrodes. After removal from the Tenney 

chamber, the cell was given an additional 8-hour relaxation to equilibrate to ambient 

temperature before testing. 
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6.1.4 CHEMICAL AND STRUCTURAL CHARACTERIZATION 

An extensive suite of characterization tools was used to determine the structural 

and chemical state of the active materials before and after cycling.  For materials 

characterized at the end of cycling, the Li-ion cells were disassembled in the MBraun Ar-

filled glovebox detailed above. The electrodes were washed with dimethyl carbonate 

(DMC) to remove residual Li salts and dried for 1 hour under vacuum at room temperature. 

X-Ray Diffraction (XRD) patterns were collected between 10 and 90 2 degrees at a scan 

rate of 0.0285 degrees s-1 using a Rigaku Miniflex II at room temperature equipped with a 

high sensitivity D/tex Ultra Si slit detector.  The Miniflex II had a Cu K(α) radiation source 

(λ = 0.15405 nm) that was operated at 30 mA and 15kV. Thermo-gravimetric Analysis 

(TGA) was done using a NETZSCH STA 449.  The TGA traces were collected from room 

temperature to 1000 oC. Each sample was purged of moisture for one hour at 120oC under 

UHP N2. Scanning transmission electron microscopy (S/TEM) images were collected 

using a FEI Talos S/TEM and Hitachi H8000 TEM with integrated energy-dispersive x-

ray spectroscopy (EDS). X-ray photoelectron spectroscopy (XPS) measurements were 

performed with a Kratos AXIS Ultra DLD XPS system.  

Pre-/post-cycled TEM images were collected using the identical-location TEM 

technique from a previous publication.40 Generally, a Cu TEM finder grid (3mm diameter, 

100 mesh, Ted Pella, Inc) was dropped with 1µL of diluted active material ink (1:10 ratio), 

drained, repeated three times, and dried for 24 hours under ambient conditions. After TEM 

imaging, the TEM grid/active material was cycled with a custom-designed Teflon-

shrouded Cu electrode with a Teflon cap that applies pressure to the outer ring of the Cu 

grid. A 3-electrode system was employed to ensure high-fidelity voltage measurements 
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(i.e. mitigate external factors that contribute to high overpotentials) inside the Ar-filled 

Mbraun glovebox. The 3-electrode system (working electrode: NiO/C, ID-NiO/CNT, NC-

NiO@CNT; counter electrode: Li foil; reference electrode: Li foil) was separated with a 

Celgard separator inside a beaker and filled with 1M LiPF6 in 1:1:1 volumetric mixture of 

EC/DMC/DEC. After electrochemical treatment, described in the next section, the working 

electrodes were rinsed with DMC by submersion for 30 minutes and dried under ambient 

glovebox conditions for 24 hours. Afterwards, the post-cycled electrodes were transferred 

to an Ar-filled Kratos AXIS Ultra multipurpose transfer vessel and removed from the 

glovebox for further characterization (e.g. XPS, TEM, SEM). 

6.1.5 ELECTROCHEMICAL TESTING  

Electrochemical measurements were done on both coin-cells and the identical 

location TEM working electrodes.  For the coin cell experiments, chronopotentiometric 

charge/discharge experiments were performed using an Arbin MSTAT battery test station.  

The voltage window for half-cells charge/discharge measurements were 0.001-3.0V.  The 

C-rates for the charge/discharge were determined based on the NiO mass, and all capacities 

are normalized to the total material mass (NiO + C + PVDF). The voltage window for full-

cells was set to 0.001-4.0V at C/2 with respect to Li(Ni0.5Mn0.3Co0.2)O2 and held at upper 

cutoff voltage until C/20 current taper. The coin cells were also exposed to cyclic 

voltammetry and Electrochemical Impedance Spectroscopy (EIS) using an Autolab 

PGSTAT302N Potentiostat (Metrohm USA).  Cyclic voltammograms (CVs) were 

collected in the same voltage window as the charge/discharge experiments with a 0.1 mV 

s-1 scan-rate.  EIS experiments were done at open circuit with a 5mV amplitude after full 

discharge (3V) at multiple frequencies between 1 MHz and 0.01 Hz.  The open circuit 
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potential assumed to be reached was reached when dV dt-1 < 1µV s-1. All the 

electrochemical measurements were made at room temperature.  The electrodes used for 

identical location TEM electrodes were exposed to either 10 or 100 CV cycles were 

performed between 0.001-3.0V at 0.8 mV s-1, 

 

6.2 RESULTS AND DISCUSSION 

6.2.1 BEHAVIOR OF NON-CONFINED METAL OXIDE NANOPARTICLES 

Li-ion cells employing MO anodes must overcome the low (particle-level) and 

long-range (electrode-level) electronic conductivity problems, long-term phase 

segregation, and irreversible capacity loss due to uncontrolled overgrowth of the SEI.  One 

possible approach is physically confining the MO from the electrolyte in a highly 

entangled, high-aspect-ratio conductive matrix (e.g. high crystallinity carbon nanotubes), 

which has the potential to significantly reduce the effects of all the “inherent” degradation 

mechanisms listed above – increasing their cyclability and coulombic efficiency – and limit 

irreversible capacity loss in the first cycle. Figure 6.1a is an SEM image of the NiO/C 

macrostructure, showing that the material synthesized consisted of large agglomerations of 

NiO nanoparticles with good porosity. Figure 6.1b presents transmission electron 

microscopy (TEM) images and energy-dispersive X-ray (EDS) spectroscopy of pre-cycled 

NiO/C and shows the successful synthesis of ordered mesoporous NiO via the SBA-15 

template-assisted synthesis. The TEM images of NiO/C indicate highly distinctive 

boundaries between each NiO nanoparticle.   
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Figure 6.1. | Physical and Electrochemical Characterization. Depicts (a) scanning electron 

microscopy (SEM), (b) transmission electron microscopy and energy dispersive 

spectroscopy (TEM/EDS) of NiO/C. (c) X-Ray Diffraction (XRD) patterns comparing the 

crystallography (e.g. crystallite domain size, structure) of NiO/C (blue line), ID-NiO/CNT 

(green line), and NC-NiO@CNT50 (purple line). (d) SEM and (e) TEM/ESC of ID-

NiO/CNT. (f) Comparing the capacity retention of NiO/C (blue line), ID-NiO/CNT (green 

line), and NC-NiO@CNT50 (purple line) at 1C charge/discharge rate to observe the 

reaction and cell-level reversibility. Reproduced with permission from The Royal Society 

of Chemistry.37 
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High angle annular dark-field (HAADF) and elemental mapping of NiO shows the 

majority of the NiO is distributed on Vulcan carbon, though some NiO particles extend 

beyond the main carbon cluster. The images and EDS mapping shows that the MO particles 

were not chemically attached to the surface but existed as a physical mixture with the 

carbon.  The X-ray diffraction (XRD) pattern for the NiO/C (blue line) is presented in 

Figure 6.1c.  Characteristic peaks for NiO were observed at 37o, 44o, 63o, 75o, and 80o 

(2θ), corresponding to its (111), (200), (220), (311), and (222) Miller indices, 

respectively.208 Additionally, two carbon-related peaks were observed at 26o and 44o, 

which are associated with the graphitic (002) and C(100) Miller planes, respectively.209  No 

secondary phases or peaks ascribed to contaminants were observed. The Scherrer equation 

was applied to calculate the average crystallite domain size for NiO/C, 24.1 nm. Figure 

6.1d is an SEM image of NiO indiscriminately deposited and anchored onto the surface of 

the 50 nm diameter CNTs, ID-NiO/CNT.  The image clearly shows a semi-entangled 

carbon nanotube network with a high degree of surface NiO deposition. As shown in the 

SEM image, the MO particles are tethered to the CNT surface as both dispersed particles 

as well as larger agglomerates. Also, TEM and EDS in Figure 6.1e, were used to analyze 

the nanostructure and spatial arrangement of NiO and CNT in the ID-NiO/CNT material 

before any electrochemical testing.  Since HAADF is able to contrast by atomic weight 

(high Z-contrasted material is ascribed to Ni, whereas the lighter Z-contrasted material is 

C), it was confirmed that the surface of the CNTs was covered extensively by NiO, though 

it should be noted that some NiO was also deposited inside of the CNTs. The XRD pattern 

for ID-NiO/CNT (green line) has similar characteristic peaks for NiO and C, NiO: 37o 

(111), 44o (200), 63o (220), and 75o (222); C: 26o (002) and 44o (100). The average 
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crystallite domain size for ID-NiO/CNT was found to be 16.6 nm, smaller than that of 

NiO/C.  

Although their physical structures are different, one important similarity between 

the NiO/C and ID-NiO/CNT materials is that they are both comprised of NiO particles that 

are completely exposed to the electrolyte in operating cells.  Therefore, it can be expected 

that all four of the degradation mechanisms discussed in the Introduction will be active for 

these materials and it is likely that their behavior in operating LIBs would be similar. 

Figure 6.1f presents the normalized capacity retention (Q/Qo) plots for both NiO/C (blue 

line) and ID-NiO/CNT (green line) over 100 cycles at a 1C rate. Each experiment was 

repeated on three cells to confirm the repeatability of the electrochemical performance. 

Also, the reference point for the initial capacity (Qo) was assumed to be the 2nd cycle to 

account for the irreversible capacity loss from SEI formation. The overall electrochemical 

cycling performance of NiO/C and ID-NiO/CNT showed similar capacity fade over 100 

cycles – showing that the type of carbon is not an intrinsically determining factor when 

considering the onset of degradation.  For NiO/C, the irreversible capacity loss in the first 

cycle was 23%.  From the 2nd cycle to the 15th cycle, the rate of capacity fade was very 

high, and the NiO/C anode lost 41% of its capacity during this time. The average coulombic 

efficiency (CE) over the first 15 cycles was also low, only 97.4%.  After cycle 15, the 

degradation rate for NiO/C was slowed, though still relatively severe and over 100 cycles; 

NiO/C lost 69.4% of its capacity and the average CE of a single cycle was 97.1%. 

As an anode, ID-NiO/CNT (Figure 6.1f green line) experienced a similar trend in 

capacity fade to NiO/C. The SEI-related irreversible capacity loss for ID-NiO/CNT was 

35.4%, which was higher than that of NiO/C, most likely due to the higher surface area of 
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the smaller NiO crystallites in ID-NiO/CNT (16.6 nm) compared to NiO/C (24.1 nm). The 

total capacity loss of ID-NiO/CNT was 73.1% over 100 cycles whereas NiO/C was 69.4%, 

which shows a high degree of similarity in the onset of degradation and overall capacity 

loss.  An important point related to the capacity retention plots in Figure 6.1f is that the 

data for both NiO/C and ID-NiO/CNT had seemingly large scatter, particularly at low cycle 

numbers.  What this suggests is that MO degradation by metal (e.g. Li, M) trapping, SEI 

(re)formation, and/or transition to higher oxidation states is a complex series of events that 

can be triggered over the distribution of cycle numbers – though typically the onset of 

degradation will occur within the first 30 cycles, and the rate of initial degradation is rapid. 

Finally, the average CE for ID-NiO/CNT was also low, 95.8%, with a notable trend of CE 

loss over 50 cycles followed by a gradual recovery. The correlation between capacity loss 

and CE loss indicates that material is being trapped in the charged state repetitively after 

each cycle.  This would result in larger Ni agglomerates, which were investigated by 

collecting TEM images of post-cycled materials and comparing them to Figure 6.1b and 

Figure 6.1e.  Also, the low measured CE without catastrophic failure and loss of capacity 

is direct evidence of the conversion of the NiO to higher oxidation states during 

charge/discharge34, which was further investigated by XPS before and after cycling.   

Figure 6.2 shows post-cycle TEM images and pre/post-cycled XPS of NiO/C and 

ID-NiO/CNT. It is important to observe the evolution of the MO particle size, as this 

impacts the electrochemical behavior. As observed in Figure 6.2 for NiO/C, even after 10 

cycles the interfacial boundaries between each NiO nanoparticle appear to merge.  After 

100 cycles, the NiO agglomerates in NiO/C are so large that individual particles are almost 

indistinguishable. The repetitive restructuring and collapse of the MO active material 
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during the conversion reaction led to larger and larger phases each time it is reformed, 

causing a gradual decrease in the Ni/Li2O interfacial contact area during discharge 

(oxidation) and trapping of material in the charged state.  In other words, the NiO/C 

undergoes significant metal trapping during discharge and is likely the primary cause for 

capacity fade during cycling.  

Figure 6.2(b-d) presents the pre- and post-cycle XPS analysis for NiO/C. Figure 

6.2 (b,c) shows the Ni2p and O1s post-cycled XPS spectra for electrodes both before and 

after 100 cycles (the spectra were collected for materials in the discharged state). The high 

resolution Ni2p XPS spectrum before cycling (Figure 6.2b) shows characteristic Ni2p1/2 

(872.5eV) and Ni2p3/2 (854eV) with a multiplet-split and displacement of 18.5 eV (from 

Ni2p1/2 to Ni2p3/2), which is characteristic of NiO spin-orbital levels.34 After 100 cycles, a 

peak at 859 eV emerged, which could be attributed to the formation of surface NiF2 (a 

likely SEI product). In addition, a shoulder peak was found at a binding energy of 855.4 

eV, which is characteristic of higher oxidation state Ni2O3, and indicates a pre-to-post cycle 

material transformation from (Ni2+→Ni3+). The O1s XPS spectrum (Figure 6.2) for the 

post-cycled NiO/C shows the presence of C=O, OH bonds at a binding energy of 533.0 eV 

and C-O bonds at 531.3 eV. Evidence for lithium alkyl carbonates, R-CH2O(C=O)OLi was 

also found at O1s binding energies of 532.5 eV and 533.5 eV.210 A less pronounced peak 

for the oxygen associated with metal oxides was observed from the peak shoulder at 530.1 

eV. From the XPS results, the portion of the Ni in the active material in the 2+ (NiO) and 

3+ (Ni2O3) oxidation states are summarized in Figure 6.2d.  During cycling, the 

unconstrained NiO/C underwent a material transformation from 100% Ni2+ to a mixed 

oxidation state of 52% Ni3+ and 48% Ni2+, accounting for the low CE observed in Figure 



www.manaraa.com

151 

 

6.1f.   As stated in the introduction, the most likely cause for the transition of Ni2+ to Ni3+ 

is the reaction of NiO with oxygen-containing species in the SEI and/or the electrolyte.  

However, because there are several oxygen-containing species in the system, it can be 

difficult to determine which one is responsible for the transformation of NiO to Ni2O3 over 

time.  Though there are many possible reactions, the O1s XPS spectra does provide 

evidence for at least one possible reaction, shown in Equation 6.1. 

2𝑁𝑖𝑂 + 2𝑅𝐶𝐻2𝑂𝐶𝑂𝑂𝐿𝑖 ⇌ Ni2𝑂3 + 𝐿𝑖2𝑂 +

𝑅𝐶𝐻2𝐶𝑂𝐶𝑂𝐶𝐻2𝑅    

Equation 6.1 

In the O1s XPS spectra for NiO/C (Figure 6.2c) and ID-NiO/CNT (Figure 6.2c) 

there is a clear asymmetry in the C-O peak where the peak shifts towards the left. The 

integrated area on either side of the peak suggests there are more C=O bonds than C-O 

bonds, which suggests that the alkyl carbonate SEI decomposition product R-

CH2O(C=O)OLi likely undergoes further decomposition.  It is also noted that the 

asymmetry of this peak coincides well with the emergence of the Ni2O3 species, suggesting 

that these events are related; however, it is acknowledged that additional reactions are 

certainly possible, even likely. Figure 6.2e shows that after 10 cycles ID-NiO/CNT was 

able to retain its pre-cycled architecture with no observable deformation to the CNT. 

However, it was observed that some NiO agglomeration occurs and that some of the active 

material particles were detached and isolated from the CNTs as they were engulfed by the 

SEI. These particles remain trapped in the electronically insulating SEI and become 

deactivated. The SEI was found to grow similarly to that of graphite, where the SEI 

partially extends out of the CNT edge planes and caps. Also, SEI-clusters were found near 

large MO deposits. 
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Figure 6.2. | Evaluation of Physical and Chemical Transformations. (a) TEM image of 

NiO/C after 10 electrochemical cycles. XPS spectra of NiO/C including (b) Ni2p, (c), O1s, 

and (d) oxidation state percentages for NiO/C. (e) TEM images of ID-NiO/CNT after 10 

electrochemical cycles.  XPS spectra of ID-NiO/CNT including (f) Ni2p, (g) O1s, and (h) 

oxidation state percentages for ID-NiO/CNT. Reproduced with permission from The Royal 

Society of Chemistry. 37 

 

Figure 6.2 (f-h) presents the pre- and post-cycled XPS analysis of ID-NiO/CNT 

and the characteristic peaks in ID-NiO/CNT show the degradation pathway to form nickel 

carbides at 852.6 eV and Ni2O3 at 857.5 eV. Figure 6.2f shows the high-resolution Ni2p 

XPS spectra for pre- and post-cycled ID-NiO/CNT. Prior to cycling, the XPS spectra were 

very similar to NiO/C, where Ni2p1/2 (873eV) and Ni2p3/2 (854.5eV) displayed an electron-

spin difference of 18.5 eV. Also, like NiO/C, significant material transformation occurred 

after 100 cycles, and the presence of nickel fluorides (857.5eV), nickel oxide (855.6eV), 

and nickel carbides (852.8eV) were observed. The indiscriminately deposited ID-

NiO/CNT post-cycled XPS analysis suggests similar chemical transformation of higher 

oxidation states (Ni2+→Ni3+) as that found in NiO/C, Figure 6.2h.  Finally, Figure 6.2g 
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shows that the O1s spectrum for ID-NiO/CNT showed a similar presence of C=O, and OH 

bonds (533 eV) and C-O bonds (531 eV) as NiO/C.  

In total, the observations in Figure 6.1 and Figure 6.2 suggest that the behavior of 

NiO/C and ID-NiO/CNT are very similar, though there were some subtle differences.  For 

instance, the degradation rate of ID-NiO/CNT seems slightly slower and the transition to 

higher oxidation states is not quite as severe.  These differences may be due to the partial 

confinement of NiO inside the CNT host, which might be able to minimize degradation of 

those particles, which are mostly isolated from the bulk electrolyte.   

6.2.2 CNT-NANOCONFINED NIO 

The proposed role of nanoconfinement to inhibit the dominant MO degradation 

pathways (in this case NiO) is illustrated in Figure 6.3a. When the MO particles are 

deposited solely inside the CNT, the CNT acts as an immobilization host that isolates MOs 

from the bulk electrolyte – which is expected to limit the extent to which the MO active 

material can react with the electrolyte, minimizing degradation.  Also, the finite space 

within the CNT provides some elasticity for volumetric expansion, but limited opportunity 

for continuous SEI growth (i.e. CNT confinement can minimize particle detachment, 

isolation, and ripening/agglomeration). In addition, the CNT holds all reactants and 

products in one closed packet, which is hypothesized to minimize possible parasitic 

degradation reactions and increase the interaction area between reactants – increasing the 

material-level reaction reversibility and improving coulombic efficiency.  

 Therefore, to explore the realized effect of confinement on long-term reversibility 

and stability, NC-NiO@CNT50 was synthesized.  The SEM images in Figure 6.3b show 

that the synthesized material was nearly completely free of surface MO particles compared 
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to ID-NiO/CNT in Figure 6.1d.  Not only is this expected to yield the advantages discussed 

above, it should also be noted that the resulting electrode would primarily consist of a 

highly conductive, interconnected carbon matrix that can freely transport electrons 

throughout the active layer211,212. Figure 6.3c further shows the successful synthesis of the 

nanoconfinement concept presented in Figure 6.3a, providing a high-resolution view of 

the structure alongside EDS elemental mapping, which showed the presence and 

distribution of Ni, O, and C. Also, the NiO particles appeared to be tethered to the inner 

walls of the CNT, which physically restricts the MOs and their charge products (M and 

Li2O) to a finite space, thereby suppressing movement.  

The high-resolution TEM images (HR-TEM) in Figure 6.3(c-1 to c-3) shows the 

lattice fringes of NiO nanocrystallites with a d-spacing of 2.4Å, which is ascribed to (111) 

plane of NiO. The interlayer separation of the CNT was determined to be 3.4 Å.  Finally, 

XRD patterns for NC-NiO@CNT50 (purple line) are shown in Figure 6.1e.  The same 

characteristic peaks for NiO (at 37o, 44o, 63o, 75o, and 80o) and carbon (at 26o and 44o) 

were observed in NC-NiO@CNT50 that were observed for NiO/C and ID-NiO/CNT.  

Application of the Scherrer equation yielded a calculated average crystallite domain size 

for NC-NiO@CNT50 of 15.9 nm, similar to ID-NiO/CNT (16.6 nm). 

After synthesis, the electrochemical response of NC-NiO@CNT50 was investigated 

and its normalized capacity retention (Q/Qo) over 100 cycles is shown in Figure 6.1f, 

alongside the data for NiO/C and ID-NiO/CNT for comparison. Unlike NiO/C and ID-

NiO/CNT, the NC-NiO@CNT50 retained essentially all its capacity over the first 100 

cycles. Also positive, NC-NiO@CNT50 had a much lower irreversible capacity loss than 

the other two NiO materials, only 12.2%.  Because of this excellent initial performance, 



www.manaraa.com

155 

 

the NC-NiO@CNT50 could cycle for an additional 300 cycles.  Over the 400 total deep 

charge/discharge cycles at 1C, the NC-NiO@CNT50 retained 96.3% of its capacity with 

very little scatter over three repeated cells. In addition, the average coulombic efficiency 

of NC-NiO@CNT50 was 99.2%.  

 Figure 6.3d shows post-cycle TEM images of NC-NiO@CNT50, which shows that 

minimal structural changes occurred during charge/discharge, in stark contrast to NiO/C 

and ID-NiO/CNT (Figure 6.2). The NiO particle size distribution of confined MOs was 

very similar pre- and post-cycling. Also, there was no evidence of either particle 

detachment or migration that led to the formation of large M/MO agglomerates. 

Furthermore, the SEI appeared to remain confined within the interior of the CNT, which 

can effectively limit SEI growth during long-term cycling.  Finally, XPS analysis showed 

that confinement also inhibited the transition of the nickel to higher oxidation states.   

Figure 6.3e shows a similar pre-cycled high-resolution Ni2p XPS spectrum for 

NC-NiO@CNT to that of NiO/C and ID-NiO/CNT. Post-cycling (100 cycles), NC-

NiO@CNT only showed the presence of NiF2 (from SEI formation) and NiO, which 

suggests that after repeated charge/discharge cycles, Ni2+ →Ni2+ retention was achieved 

and that no measurable transformation to Ni3+ was observed (Figure 6.3g). Therefore, the 

possible reaction pathways for a constrained material appear to be limited to the reversible 

electrochemical reaction pathways – which should allow for long term operation. To better 

understand the electrochemical behavior of the NC-NiO@CNT50, Figure 6.4a and Figure 

6.4b shows charge/discharge and differential capacity analysis (dQ dV-1) curves, 

respectively, during the 1st, 100th, 200th, 300th, and 400th cycle. 
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Figure 6.3. | Material Nanoconfinement. (a) Illustration of metal oxides spatial 

rearrangement during charge/discharge in the case of nanoconfinement, (b) SEM images 

of nano-confined NiO in NC-NiO@CNT50, (c) TEM images and EDS mapping of NC-

NiO@CNT50, (c-1) interlayer spacing of CNT, (c-2) interface between MO-CNT, (c-3) 

lattice fringes of NiO, (d) TEM image of NiO@CNT50 after 10 electrochemical cycles. 

XPS spectra of NC-NiO@CNT50 including (e) Ni2P, (f) O1s, as well as (g) the percentage 

of active materials remaining in the 2+ oxidation state after cycling.  Reproduced with 

permission from The Royal Society of Chemistry.37 
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Figure 6.4. | Electrochemical performance. (a) The charge-discharge curves and (b) 

differential capacity analysis (dQdV-1) of NC-NiO@CNT50. (c) Rate capability evaluation 

for charge reversibility and rate-specific side reactions at different current densities for NC-

NiO@CNT50. (d) EIS spectra after 10, 50, and 100 charge/discharge cycles for ID-

NiO/CNT and NC-NiO@CNT50, showing the evolution of chemical and physical 

processes (e.g. diffusion, charge transfer, electrolyte conductivity, SEI resistance) during 

cycling. (e) Capacity retention over 2000 cycles for NC-NiO@CNT10 at 1C (718 mAh g-

1). (f)  Capacity retention, charge-discharge curves, and differential capacity analysis for 

high loading full cells made from NC-NiO@CNT10 anodes and Li(Ni0.5Mn0.3Co0.2)O2 

cathodes (anode loading: 5.16 mg cm-2; cathode loading: 18.23 mg cm-2) full cell. XPS 

spectra for NC-NiO@CNT10 before and after cycling including (g) Ni2P, (h) O1s, and (i) 

the percentage of NiO remaining in the 2+ oxidation post-cycling. Reproduced with 

permission from The Royal Society of Chemistry.37 
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The conversion reaction and the SEI formation is shown in the 1st cycle at a mixed 

potential of 0.350V. The subsequent reduction plateau occurs at 1.15V and the oxidation 

plateau at 2.15V. Cycles 100, 200, 300, and 400 show minimal deviations in both the 

charge and discharge voltage plateaus/peaks, which indicates excellent reaction 

reversibility and active material utilization over time. Subsequent cycles result in a 

decoupled reduction plateau that is characteristic of the conversion reaction. It is noted that 

the CNT is a non-dilutive conductive carbon additive that also allows for some Li-ion 

intercalation, which may contribute a little to the total capacity. During the oxidation, a Li 

de-intercalation peak was observed at 0.2 V and a metallic Ni reconversion back to NiO at 

1.5V and 2.15 V. 

Electrodes made of well-embedded MOs in conductive carbon matrices will exhibit 

less contact resistance at the MO/Carbon interface.  Therefore, it might also be possible 

that these confined, nano-sized MOs will exhibit enhanced reaction kinetics and rapid 

diffusion of Li ions compared to other structures.  This was explored through experiments 

at several charge/discharge rates. Figure 6.4c shows the rate capability of NC-

NiO@CNT50 and shows a capacity of 460 mAh g-1 at 5C. Even after alternating among 

various C-rates, the cell capacity retention after 400 cycles was at 627 mAh g-1 at 1C, which 

was 94% of the original capacity. 

 EIS measurements (Figure 6.4d) can be used to explain the evolution of the 

physical and chemical processes because each of the characteristic phenomena (diffusion, 

reaction, etc.) have their time constants and relaxation times, which hence can be probed 

at different frequencies. It was observed that unlike ID-NiO/CNT, where the evolution of 

the Rohmic increased over 100 cycles, the nano-confined NC-NiO@CNT50 showed a 
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negligible increase in charge transport impedance.  NC-NiO@CNT50 also had a lower 

charge transfer resistance than ID-NiO/CNT and the charge transfer resistance was 

unaffected by cycling.   

The combination of cycling performance, pre-/post-cycled TEM/XPS, and EIS 

analysis suggest that the degree of confinement and isolation from the bulk electrolyte 

might play a pivotal role in concomitantly increasing the MO reaction reversibility and 

minimizing the size reactions responsible for the change in Ni oxidation state and long-

term SEI growth.  Therefore, a version of the NC-NiO/CNTx anode was synthesized with 

the specific goal of providing even less void space (i.e. less volume for excess electrolyte 

exposure) and more rapid Li+ diffusion.  This was accomplished by using CNTs with a 

small diameter, 10 nm versus 50 nm.  The total active loading of NiO was determined to 

be 89.9% through thermogravimetric analysis (TGA).  

Figure 6.4e shows the capacity retention of NC-NiO@CNT10 over 2000 

charge/discharge cycles at 1C.  It was found that this material was highly reversible, 

showing an achievable capacity 686 mAh g-1 after 2000 cycles (initial capacity = 824 mAh 

g-1, retention = 83.3%). Also, a coulombic efficiency greater than 99.9% was measured (to 

be more quantitative would require High Precision Coulometry measurements, which is 

beyond the scope of this study). Additionally, Figure 6.4 (f-h) shows the pre- and post-

cycle XPS spectra after 2000 cycles for the highly-constrained NC-NiO@CNT10. In short, 

it was found that all of the nickel after 2000 cycles was in the 2+ oxidation state, suggesting 

that the confined MO in NC-NiO@CNT50 is highly stable and highly reversible.  
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6.3 SUMMARY 

The main descriptor for whether high capacity and capacity retention was achieved 

was whether or not the MO was exposed to (NiO/C and ID-NiO/CNT) or isolated from 

(NC-NiO@CNTx) the electrolyte. As summarized in Figure 6.5, MOs undergo four types 

of physical processes that influence their behavior in operating LIBs: uncontrolled growth 

of the SEI, a transition to higher oxidation states, metal agglomeration, and metal trapping.  

These processes directly impact the coulombic efficiency, capacity retention, and onset of 

degradation. Randomly dispersed MOs on conductive carbon (whether its carbon black or 

advanced carbon) are susceptible to continuous uncontrolled growth of the SEI, and this 

phenomenon is primarily found to be caused by the repetitive expansion/contraction of 

MOs during phase separation/recombination that exposes the highly reactive surfaces of 

the MO nanoparticles. Without a proper barrier, the SEI grows onto the highly exposed 

surface and uncontrollably dislodges particles from the conductive medium in the 

electrode. These electronically isolated particles become electrochemically deactivated, 

and with the loss of active material, results in capacity fade. Also, the destabilized oxygen 

balance and local overpotentials due to elevated internal resistance drive the evolution to 

higher oxidation states.  The reactions that guide the transformation of the MO to higher 

oxidation states do not consume Li, but they do consume oxygen in the system and change 

the number of electrons transferred per metal atom.  This results in lower coulombic 

efficiencies but does not result in capacity loss.   
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Figure 6.5. | Phase Separation and Degradation Pathway. Identifying the degradation 

pathways in conversion MOs (e.g. M/MO agglomeration, metal trapping, electrical 

detachment, SEI engulfment of MO, particle delamination) caused by fluctuations in the 

local e-, Li+, oxygen, and metal balance during phase separation for (a) physically mixed 

NiO/C, (b) anchored ID-NiO/CNT, and (c) nano-confined NC-NiO@CNT. Reproduced 

with permission from The Royal Society of Chemistry.37 

 

The SEI reactions and the reactions associated with coulombic efficiency loss in 

operating cells are summarized in Table 6.1. The MO particles were always contained 

inside the CNT-matrix, which enabled it to obtain a very high reaction reversibility.  In 

other words, the Ni atoms in the fully discharged state remained in the 2+ oxidation state.  

NiO was extremely stable over a large number of cycles with high coulombic efficiency.   

Therefore, it appears that constraint-based synthesis routes minimize the degradation 

pathways associated with MOs and such nano-confinement represents a very promising 

strategy to increase the adoption and practicality of MO-based anodes for Li-ion batteries.   
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Table 6.1. | Evaluation of Oxidation States. The overall reaction pathways associated with various 

degrees of constraints of confinement of metal oxides. 

Case Study Pre-

Cycled 

Post-

Cycle  

Possible Reaction Pathway Results 

Control 

(NiO/C) 

100 cycles 

100% Ni2+ 48% Ni2+ 

52% Ni3+ 

 

2LiF + Ni ⇌ NiF2 + 2Li+ +
2e−(SEI) 

2NiO + 2RCH2OCOOLi ⇌
Ni2O3 + Li2O +
RCH2COCOCH2R (HOS) 

Resulted in the 

formation of 

higher oxidation 

states (HOS) 3+ 

oxidation state 

Indiscriminately 

Deposited  

(ID-NiO/CNT) 

100 cycles 

100% Ni2+ 

 

63% Ni2+ 

37% Ni3+ 

 

2LiF + Ni ⇌ NiF2 + 2Li+ +
2e−(SEI) 

2NiO + 2RCH2OCOOLi ⇌
Ni2O3 + Li2O +
RCH2COCOCH2R (HOS) 

LixCyOz + Ni ⇌ NiCyOz +

xLi+ + xe− (SEI) 

Similar results to 

control the 

Formation of 

higher oxidation 

states (HOS) and 

NiCyOz species  

Nanoconfined 

(NC-

NiO@CNTx) 

2000 cycles 

100% Ni2+ 100% Ni2+ 2LiF + Ni ⇌ NiF2 + 2Li+ +
2e−(SEI) 

 

NiO transformed 

to NiF2 and 

remained in the 

2+ oxidation state  
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CHAPTER 7: CONCLUSIONS 

Li-based batteries play a pivotal role in enabling of all the luxuries of our electrified 

society and are here to stay. This thesis fostered a better understanding of the complex 

thermodynamics, kinetics, and transport properties of current-generation 

graphite/NMC532 cells. A non-destructive parameter extraction via a pulse-relaxation 

GITT method was used to map the exchange current (i0S), diffusion time constant (τ), 

internal resistance (RIR), and the entropic heat coefficient (dUdT-1) as a function of 

temperature (-30oC to 45oC) and SOC (0% to 100%). The extracted parameters were later 

used in a reduced order lumped electrochemical-thermal model (TLM) to capture the 

voltage and temperature profiles, which is consistent with the experimental validation in 

Ng et al78. The TLM model deviates at high current densities (>1C) from cell-level SOCs 

< 5%; however, LIB packs typically operate within the voltage plateau (SOC = 10% to 

100%) and BMS discharge cutoffs occur at a specified dV dt-1 to ensure pack longevity. 

The state space transformation of the PDEs used in this lumped model was able to decrease 

the computational time for 1 charge/discharge cycle by 50% (~2s to less than 1s). The state 

space approach (PDE to ODE transformation) is an effective method to greatly enhance 

the calculation time for BMS applications, and the non-destructive GITT measurement for 

four cell-level parameters (i0S, τ, RIR, dUdT-1) and is directly relatable to mathematical 

quantities in the reduced order TLM. In a world that requires faster calculations and 

reduced computational time, a novel method to extract parameters non-destructively can 
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be implemented as initial guesses to increase the convergence time and approach higher-

fidelity voltage and temperature predictions. 

 The next section of this thesis focused on studying the effects of the extreme 

operating conditions that are expected to be experienced in multiple applications (e.g. 

satellites, UUV, electric aircraft, cold-climate EVs, etc.) on LIBs. Low-temperature cycling 

at low rates were found to catastrophically compromise the cell, and the electrode 

(NMC532/LixC6) morphology, by a combination of Li0 deposition and severe gassing. The 

morphology of Li0 deposits was found to vary spatially on an electrode, where mushroom-

shaped and/or mossy-like Li0 grows near electrode edges but near-uniform Li0 deposition 

occurs towards the electrode center. The anisotropy in the Li0 growth mechanism indicates 

severe (voltage, current, concentration) gradients within the electrode from tab-to-center, 

flat-to-curved, and initial-to-final layers. First, Li0 deposition exacerbates the formation of 

gases, which was found to result in a chemical reaction that causes particles to fuse together 

and form numerous gas pockets that drastically alter the porosity and volume of the 

electrode. Gas formation was also found to occur preferentially near the anode edge. 

Furthermore, severe volumetric expansion/contraction during LT cycling causes high 

warping of the curved regions of each jellyroll and can cause electrode buckling fractures 

and complete breakage of the electrode. Therefore, next-generation battery electrode 

design should incorporate reinforced anodes and/or cathodes that mechanically strengthen 

regions where high-stress is expected.  Most notably, this study showed that there exists 

two catastrophic failure pathways for large format LIBs under low-temperature cycling: 

1) non-thermal runaway from pressurized venting and 2) thermal runaway.  
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The last portion of this thesis dealt with NiO as a possible safe, high energy density 

anode material.  The next-generation of Li-based batteries must balance the safety, energy 

density, and durability trilemma that plagues material development. It is well known and 

further elucidated in this thesis that the pursuit of high energy density materials (e.g. Si, Li, 

conversion metals) usually leads to poor cyclability or compromised safety. Conversion-

based materials, such as MOs, can be a promising alternative to commercialized 

intercalation chemistries. Although conversion-based metal oxides have high gravimetric 

capacities, it was shown that a complex series of degradation mechanisms can be active, 

even over a very limited number of cycles. MO-based anode materials undergo four 

primary degradation pathways that limit their achievable capacity, coulombic efficiency, 

and long-term stability. When the MO particles are fully exposed to the electrolyte in 

networks with insufficient electronic conductivity, all the degradation pathways are active, 

and the MO anode can undergo rapid material degradation.   

SEI formation on NiO was found to be broken down into four Regions.  At the 

beginning of SEI formation on NiO, the results were very consistent to those observed 

during early-stage SEI formation on carbon, suggesting that SEI formation begins very 

similarly from a mechanistic perspective.  After the early stages of SEI formation, the 

behavior is dominated by the conversion reaction itself with little contribution to the SEI 

formation.  The conversion reaction did result in some volumetric expansion and some 

particle detachment from the surface, with some of the detached particles being embedded 

in the SEI.  In the final stages, a densified SEI layer is formed, just like on carbon-based 

materials, but the mechanism for its formation is different.  On carbon-based materials, the 

formation of the dense SEI is limited by the electrochemical activation of low concentration 
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EC-intermediates on the surface.  For NiO, the nature of the RDS to form the dense SEI is 

consistent with Li+ abstraction from the SEI.  In the future, these new insights can help 

battery manufacturers to engineer appropriate environments and pre-treatment protocols to 

build robust SEI layers on this family of materials, enabling long-life, stable, high-capacity 

Li-ion batteries.   

It is additionally shown that nano-confinement of MO nanoparticles can 

significantly reduce the rate of some degradation mechanisms and eliminate others – 

extending the achievable lifetime of LIBs with MO anodes significantly.  In fact, the top-

performing material in this study, NC-NiO@CNT10, was able to cycle for more than 2000 

deep charge/discharge cycles at 1C while retaining > 80% of its initial capacity (824 mAh 

g-1) with a coulombic efficiency > 99.9%.  Nanoconfined NiO was also able to support a 

very high capacity of 460 mAh g-1 at 5C, a rate that is very relevant for fast-charging and 

high-power applications. Also, high loading full metal oxide Li-ion cells (prelithiated NC-

NiO@CNT10/LiNi0.5Mn0.3Co0.2O2) were assembled and tested. The MO/LMO full cell 

confirmed the hypothesis that confinement inhibits anode degradation (increasing the 

coulombic efficiency) and the long-range conductive CNT networks helps electrons 

percolate through thick, high loading electrodes (boosting material utilization).  Finally, 

the discovery that nanoconfinement can improve the reaction reversibility and longevity of 

conversion metal oxides can likely also be applied to other conversion-based chemistries 

as well (e.g. metal hydrides, nitrides, oxides, fluorides, phosphides, and sulfides. Therefore, 

the findings of this work help represent one promising pathway to find a safe, high capacity, 

fast-charge, and highly reversible anode that may one day enable LIBs for applications that 

require high-energy density and/or high-power density and long life.  One reasonable 
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question that remains from this work is the practicality of using CNTs in commercial cells, 

which have historically been thought of as cost-prohibitive.  There are some CNTs 

available today that have lower aspect ratios and/or increased defect density that are 

relatively inexpensive; these may be viable options, though the ramifications of their use 

need to be further investigated.  Also, it may be possible to implement lower-cost solutions 

for nanoparticle confinement that are yet to be discovered.   
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CHAPTER 8: RECOMMENDATION FOR FUTURE WORK 

The future for battery technology is bright, filled with opportunity, and ever-

changing. As a result, there are still many questions left unknown. Four main 

recommendations are presented here. First, new batteries are being rolled out since there is 

a paradigm shift towards higher energy density batteries that are extremely durable. 

Batteries like the million-mile battery chemistry213 (Li(Ni0.5Mn0.3Co0.2)O2/LixC6) or 

secondary Li/FeS2 are of high interest214 and the parameterization of these next-generation 

Li-ion batteries can be highly beneficial from an optimization and safety standpoint. The 

next recommendation takes a bigger leap beyond Li-ion batteries. In particular, Li/S 

batteries have very attractive properties including very high energy densities and low cost, 

but are limited by how long these systems last (i.e. poor cycle life). A detailed study on the 

fundamental parameters (thermodynamics, kinetics, and transport) of Li/S batteries can 

help battery researchers isolate and develop strategies to circumvent the degradative 

processes inherent to sulfur and Li0 metal. The third recommendation is built on the second 

and explores various ion-exchange trapping agents as a method to stop the polysulfide 

shuttle problem. Finally, operando optical/spectroscopic studies are proposed as a viable 

method to study the corrosion of Li0 metal and the polysulfide shuttle problem. The 

inclusion of Li2S on the anode is known to drastically alter the SEI film and change the 

deposition/stripping process but how does the reaction mechanism change is left unknown.  
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8.1 PARAMETERIZATION OF NEXT-GENERATION LI-ION BATTERIES 

Li-ion batteries or Li-related batteries are the most promising energy storage 

devices for the adoption of new technologies. Also, EVs are still in their infancy and still 

require years before full maturation. The adoption of the million-mile battery chemistry213 

(Li(Ni0.5Mn0.3Co0.2)O2/LixC6) in later-generation EVs will require full parameterization of 

that system to aid in the predictive analytics and wide-scale distribution of the technology. 

The principles in this thesis can be used for that specific cell chemistry and design. The 

extracted parameters can in-turn be used in the standard P2D, SPM, or Lumped model. 

Model-driven design provides invaluable information in R&D and helps researchers 

develop a fundamental framework to optimize the system of interest. In the case of 

batteries, near-theoretical limits to energy density, cyclability, and total performance of the 

system can be targeted (i.e. as an objective) to tease out optimal operating conditions, 

geometry, chemistry, etc. Also, degradative processes, and loss mechanisms (e.g. electrical 

conduction, lithium diffusion, electrolyte diffusion, and charge transfer kinetics) can be 

deconvoluted into fundamental principles that limit the battery. In combination with the 

macroscale models (P2D, SPM, lumped), mesoscale models that apply similar physics-

based principles to real cross-sectional images of battery electrodes can prove to be 

invaluable in engineering design. A similar method is currently being used for secondary 

Li/FeS2 batteries in nonaqueous or polymer electrolytes (e.g. LiTFSI in DOL/DME or ionic 

liquids) that have high energy density (>300 Wh/kg) and cyclability. Unlike LiCoO2 or 

graphite (standard electrodes for Li-ion batteries), whose reactions are based on highly 

reversible intercalation/deintercalation, FeS2 leverages a two-stage reaction mechanism 

that intercalates/deintercalates (0 < x < 2 for LixFeS2) and then bond-breaks (conversion 
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reaction) in the presence of Li+ ions to form Fe0-metal and Li2S (x > 2). A two-stage 

physics-based reaction mechanism (Figure 8.1) was implemented in COMSOL 

Multiphysics® via an interfacial reaction of Li+|FeS2 coupled to solid-state diffusion 

(intercalation reaction) and a shrinking core phase separation reaction mechanism of 

LiFeS2 | Fe0 + Li2S (conversion reaction). Below contains the design equations and 

simulation domain for the 3D mesoscale model.  

 

 

Figure 8.1. | Illustration of the simulation domain and geometry 

Ion transport in the electrolyte of an electrochemical system (i.e. a battery) is 

coupled with electron conduction in the electrode domain. The electron conduction within 

the FeS2 cathode particles can be modeled using charge conservation of Ohm’s law, and 

expressed as,  
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∇ ⋅ 𝑖𝑠 = ∇ ⋅ (−σ𝑠∇ϕ𝑠) = 0 Equation 8.1 

where 𝜎𝑠 denotes the electrical conductivity and 𝜙𝑠 represents the solid phase potential of 

the particle. The material balance of species within the cathode and separator is represented 

as,  

𝜕(𝐶𝑖)𝑑

𝜕𝑡
= −∇ ⋅ 𝑱𝒊 + 𝑹𝒊 

Equation 8.2 

where 𝐶𝑖 is the concentration of species i (i = Li+, TFSI-) [mol m-3] and the index d 

represents the individual domain (separator, cathode, electrolyte). The intercalation of Li+ 

into the FeS2 particle is described by Fick’s second law of diffusion and represented as,  

𝑱𝑳𝒊 = −𝐷𝐿𝑖∇𝑐𝐿𝑖 Equation 8.3 

where 𝐷𝑖  is the solid-phase diffusion coefficient for lithium and 𝑐𝐿𝑖 is the concentration of 

lithium in the intercalating particle. The conversion reaction of fully intercalated Li2FeS2 

is converted to Fe0 and Li2S via a level-set field function that moves an interface between 

the shell (Fe0/Li2S,  = 1), the core phase (fully intercalated Li2FeS2,  = 0), and 

represented as, 

𝜕

𝜕𝑡
+ 𝒖 ⋅ ∇ = 𝛾∇ ⋅ (𝜀∇ − (1 − )

∇

|∇|
) 

Equation 8.4 

where the 𝜀 parameter is proportional to the element size, 𝛾 is the reinitialization parameter 

that accounts for the conversion reaction rate. The interfacial velocity of Li2FeS2 | Fe + 

Li2S core-shell is calculated based on the expression below,  

𝑢 = 𝑛 ⋅ (−
𝑖loc

𝑛𝐹

𝑀P

𝜌P

) 
Equation 8.5 

where 𝑖loc is the local current density, n is the number of electrons, 𝑀P is the molar mass 

and 𝜌P is the density of Fe0/Li2S, and the interface normal is defined as 𝑛 =
∇

|∇|
 . The source 
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and consumption terms are implemented into the mass balance to simultaneously produce 

the Fe0/Li2S and consume the Li2FeS2 phase. 

The flux term 𝑱𝒊 is expressed as the diffusion and migration term in the Nernst-

Planck expression,  

𝑱𝑖,𝑚 = −𝐷𝑖,𝑚∇𝐶𝑖 − 𝑧𝑖

𝐷𝑖,𝑚

𝑅𝑇
𝐹𝐶𝑖∇𝜙𝑙 

Equation 8.6 

where 𝐷𝑖,𝑑is the diffusion coefficient for the domain d and species i, 𝑧𝑖 is the valence state, 

F is Faraday’s constant (96,485 C mol-1), R is the gas constant (8.314 J mol-1K-1), and 𝜙𝑙 

is the liquid-phase potential. The reaction rate is modeled by the Butler-Volmer kinetic 

expression, 

𝑖 = 𝑖0 [exp (
α𝑎𝐹η

𝑅𝑇
) − exp (

−α𝑐𝐹η

𝑅𝑇
)] 

Equation 8.7 

where 𝛼𝑎/𝛼𝑐 is the anodic/cathodic transfer coefficient, 𝜂 is the overpotential for the 

electrochemical reaction (𝜂𝑗 = 𝜙𝑠 − 𝜙𝑙 − 𝜙𝑒𝑞), and 𝑖0 is the exchange current density and 

represented as, 

𝑖0,𝑖 = 𝑘𝑖𝑐𝑠,𝑚𝑎𝑥,𝑖𝑐𝑙
0.5 (1 −

𝑐𝑠,𝑖|𝑟=𝑅𝑠,𝑖

𝑐𝑠,𝑚𝑎𝑥,𝑖  

 )

0.5

(
𝑐𝑠,𝑖|𝑟=𝑅𝑠,𝑖

𝑐𝑠,𝑚𝑎𝑥,𝑖
)

0.5

 
Equation 8.8 

where 𝑘𝑖 is the reaction rate constant.  

The temperature dependency of important kinetic and transport parameters was 

investigated for the intercalation/conversion hybrid chemistry model. Parameters such as 

diffusion coefficients, reaction rate constants, and electrical conductivity are temperature-

dependent and their values as a function of temperature can be expressed via an Arrhenius 

formulation.  

Ds,j(t) = Ds,j, ref exp [
Ead,j

R
(

1

T
−

1

Tref

)] 
Equation 8.9 
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𝑘j(𝑡) = 𝑘j, ref exp [
E𝑎r,j

𝑅
(

1

𝑇
−

1

𝑇ref

)] 
Equation 8.10 

j(𝑡) = j, ref exp [
E𝑎r,j

𝑅
(

1

𝑇
−

1

𝑇ref

)] 
Equation 8.11 

where 𝑇ref represents the reference temperature, 𝐷s,j, ref is the solid-state diffusion 

coefficient at reference state, 𝑘j is the reaction rate constant of reaction j (intercalation or 

conversion), j is the electrical conductivity, and Ead,j is the activation energy of the 

parameter.  

Figure 8.2a shows the open circuit potential (OCP) curves (blue dots) and 

charge/discharge profile (black dots) for a solid-state Li/FeS2 battery that undergoes a four-

electron transfer process. The first two electrons transferred from FeS2 to form Li2FeS2 is 

an intercalation reaction (Equation 8.14) and the reaction of Li2FeS2 to Li2S and Fe0 

follows a conversion-type reaction (Equation 8.15). The simulation profile shows model 

fidelity to a multi-plateau and multi-reaction process. Figure 8.2b shows the particle 

reaction dynamics. At 100% SOC the interfacial reaction of Li and FeS2 particles is 

facilitated by the solid-state diffusion of Li into the particle which generates the 

concentration gradient within the particle. Next, the Li2FeS2 undergoes a conversion 

reaction at the interface to form a shrinking core type reaction mode. The process in Figure 

8.2b resembles the in-operando TEM experiments of FeS2 by Yersack et al215 

FeS2 + 2Li+ + 2e- ↔ Li2FeS2 Equation 8.12 

Li2FeS2 + 2Li+ + 2e- ↔ 2Li2S + Fe0 Equation 8.13 
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Figure 8.2. | Prototype model of a two-particle Intercalation/Conversion (2P-I/C) hybrid 

FeS2 chemistry for secondary battery purposes, where (a) represents the model simulation 

for the discharge/charge reaction with multiple reaction plateaus, and (b) contains the 

particle-level reaction modes and electrolyte loss.  
 

The remaining goals of this project is to convert the prototype model into the full-

3D mesoscale model using the X-ray computed tomography of FeS2 electrodes (XCT and 

3D mesoscale simulation from the previous project216 and represented in Figure 8.3). In 

short, the futures tasks required in converting the prototype 2-particle model into the full 

3D XCT mesoscale model includes: 

1) Full implementation of hybrid chemistry (intercalation/conversion) into the 3D 

XCT mesoscale model and capture snapshots of ∆𝐶𝐿𝑖/𝐶𝐿𝑖,𝑚𝑎𝑥 , 𝐿𝑖+(𝑀), 𝐼/

𝐼𝑎𝑝𝑝, ∆𝑉 (𝑉), 𝜎(𝑆 𝑐𝑚−1), 𝑣𝑜𝑛𝑀𝑖𝑠𝑒𝑠𝑆𝑡𝑟𝑒𝑠𝑠(𝐺𝑃𝑎) 

2) Calculate per-particle reaction rates which are classified based on whether it is 

the near binder or electrolyte surfaces for various depths of discharge  

3) Re-simulate the hybrid chemistry charge/discharge curves using the 3D XCT 

mesoscale model 
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4) Determine the mechanical effects due to expansion/contraction of FeS2 

5) Isolate the loss mechanisms that are inherent to the FeS2 electrode design (i.e. 

electrical conduction, lithium diffusion, electrolyte diffusion, and charge 

transfer resistance) and at different SOC. 

 

Figure 8.3. | Reconstruction of X-ray computed tomography (XCT) of NMC from Ebner 

et al.217 

 

8.2 LI-SULFUR BATTERIES 

Lithium-sulfur (Li-S) batteries that operate based on a series of complex 

dissolution/precipitation reactions benefit from a high theoretical energy density (~600 

Wh/kg – which is 4x greater than standard Li-ion batteries). Also, Li-S systems exhibit 

good performance under low-temperature operation and the materials are abundant, non-

toxic, low cost, and highly sustainable – which makes the system a promising future 

alternative to the current Li-ion battery technologies. Several hurdles hinder wide-scale 
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adoption of Li-S batteries: 1) the complex dissolution and diffusion/migration of 

polysulfides from the cathode to the anode, which causes severe active material loss and 

impedance build up at the anode, and 2) the high-capacity results in large volumetric 

variations and morphological degradation, which leads to interfacial instability (S/carbon, 

S/binder, etc).  

 Li-S batteries are still under development but typically consist of a Li-metal anode 

paired with a sulfur/carbon (thermodynamically stable state cyclo-S8 rings) composite 

cathode. The electrolyte consists of 1M LiTFSI in 1:1 volumetric ratio of 1,3-dioxolane 

(DOL) and 1,2-dimethoxyethane (DME). During discharge, the Li-metal oxidizes to 

release electrons and Li+ into the electrolyte. The Li+ migrate from the cathode to react 

with the sulfur. At the same time, sulfur undergoes a complex series of 

dissolution/precipitation reactions. Cyclo-S8 rings solubilize during the reduction process 

to produce lithium polysulfide species as depicted in Table 8.1. Typically, higher-order 

chains are soluble (>S4) whereas low orders polysulfide chains are not.  

 

Table 8.1 | Reactions in Li/S batteries 

Dissolution Reactions Precipitation Reactions  

𝐿𝑖 ⇌ 𝐿𝑖+ + 𝑒−  Equation 8.14 

𝑆8(𝑠) ⇌ 𝑆8(𝑙)  Equation 8.15 

1

2
𝑆8(𝑙) + 𝑒− ⇌

1

2
𝑆8

2−  2𝐿𝑖+ + 𝑆8
2− ⇌ 𝐿𝑖2𝑆8(𝑠) Equation 8.16 

3

2
𝑆8

2− + 𝑒− ⇌ 2𝑆6
2−  2𝐿𝑖+ + 𝑆6

2− ⇌ 𝐿𝑖2𝑆6(𝑠) Equation 817 

𝑆6
2− + 𝑒− ⇌

3

2
 𝑆4

2−  2𝐿𝑖+ + 𝑆4
2− ⇌ 𝐿𝑖2𝑆4(𝑠) Equation 8.18 

1

2
 𝑆4

2− + 𝑒− ⇌ 𝑆2
2− 

2𝐿𝑖+ + 𝑆2
2− ⇌ 𝐿𝑖2𝑆2(𝑠) Equation 8.19 

1

2
 𝑆2

2− + 𝑒− ⇌ 𝑆2−  2𝐿𝑖+ + 𝑆2− ⇌ 𝐿𝑖2𝑆 Equation 8.20 
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Experiments should be designed and performed to obtain different parameters and 

provide validation data for the models. One of the most important sets of parameters is the 

design parameters (e.g. thickness of electrodes, particle size, etc.), diffusion coefficients, 

and exchange currents densities, which can be determined experimentally.  

As with a typical coin cell assembly, a 1.76 cm2 lithium reference/counter should 

be centered on the cathodic side of the case. A micropipette can be used to transfer 30 µL 

of 1M LiTFSI in 1:1 volumetric ratio of 1,3-dioxolane (DOL) and 1,2-dimethoxyethane 

(DME) onto the lithium reference/counter electrode. The separator should be cut to 1.96 

cm2 and placed on top of the lithium foil. Another 30 µL of 1M LiTFSI in DOL/DME can 

be deposited onto the separator. A gasket should be put on the outer casing to prevent short-

circuiting. The working electrode (Sulfur-graphene oxide nanocomposite) should be placed 

facedown onto the electrolyte wetted separator. The spacer disk, wave washer, and cap 

should be placed on top and then crimped at 750 PSI with an MTI hydraulic press. 

A current-pulse relaxation method via galvanostatic/potentiostatic intermittent 

titration technique (GITT/PITT) on an ARBIN battery cycler can be used to extract the 

diffusion coefficient (DLi+) as a function of the state of charge (SOC) and operating 

temperature. The temperature of each cell can be controlled inside a Tenney climate-

control chamber. A typical procedure can include 100 current pulses at C/10 for a 

designated time that satisfies 𝑡 ≪ 𝐿2/𝐷, followed by a relaxation period (i.e. no current) 

that lasts until electrochemical equilibrium. In accordance with Fickian diffusion, the 

diffusion coefficient can be extracted from the equation50: 

𝐷 =
4

𝜋
⋅ (

𝑖𝑉𝑀

𝑆 ⋅ 𝐹 ⋅ 𝑛
)

2

⋅ [(
𝑑𝐸

𝑑𝛿
) / (

𝑑𝐸

𝑑√𝑡
)]

2

 
Equation 8.21 
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where VM is the molar volume (cm3/mol), i is the pulsing current (A), S is the 

electrochemically active surface area (cm2), F is Faraday’s constant (96485 C/mol), n 

represents the charge number, 𝛿 is the titration step, and t is the pulse time duration (s).  

The steady-state potential response during the relaxation period of the GITT/PITT 

protocol can also reveal the open circuit potentials (OCP) of the electrodes. In addition to 

DLi+ and the OCP, the exchange current density and the reaction rate constant can also be 

extracted at low overpotentials via the Taylor series expansion of the Butler-Volmer (BV) 

equation to the Linearized form of the BV equation, 

𝑖 = 𝑖𝑜

(𝛼𝑎 + 𝛼𝑐)𝐹

𝑅𝑇
𝜂𝑠 

Equation 8.22 

where (𝛼𝑎 + 𝛼𝑐) is the anodic and cathodic transfer coefficient, R is the ideal gas constant, 

T is temperature, and  𝜂𝑠 is the overpotential. In addition to the diffusion coefficient and 

exchange current density, the reaction rate constant can also be measured at various states 

of charge following the equation below, 

𝑘𝑆 =
𝑒0𝑆

𝐹𝑐𝑠
𝑚𝑎𝑥𝑐𝑒

0.5(1 − 𝜃𝑠𝑢𝑟𝑓)
0.5

𝜃𝑠𝑢𝑟𝑓
0.5

 
Equation 8.23 

in which cs
max is the maximum Li solid-phase concentration (mol/m3), ce is the electrolyte 

concentration, 𝜃𝑠𝑢𝑟𝑓 is cs(r=R)/cs
max. The electrochemical properties of different 

polysulfides are convoluted but are important parameters to develop a high-fidelity model. 

In order to extract the diffusion coefficient, exchange current density, and reaction rate 

constant, a binary solution at various concentrations should be procured. The samples 

should contain stoichiometric amounts of lithium, sulfur, and LiTFSI. The mixture should 

be rigorously stirred for 4 days via magnetic agitation and the procedure should create a 
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binary electrolyte containing LiTFSI and Li2Sn (n = 6, 4) in DOL/DME. The fundamental 

diffusion coefficient can be realized by the equation below for ternary electrolytes, 

𝒟𝒾𝒿
0 =

𝐹2

𝜅
∑ ∑

𝑧𝑘𝑧𝑤

𝑔𝑖−1,2𝜃𝑗−1,𝑎
(𝑙𝑖𝑗

0 𝑙𝑘𝑤
0 − 𝑙𝑖𝑛

0 𝑙𝑘𝑗
0 )

3

𝑤=1

3

𝑘=1

, 𝑖, 𝑗 = 2,3 

Equation 8.24 

where 𝜅 = 𝐹2 ∑ ∑ 𝑧𝑘𝑧𝑤𝑙𝑘𝑤
03

𝑤=1
3
𝑘=1 , 𝑙𝑖𝑗

0  is the fundamental transport coefficients for 

irreversible processes, 𝑔𝑖−1,2 is the stoichiometries of the ions, and z is the charge number. 

Additional electrode properties can be extracted from several methods including 

scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and Brunauer 

Emmett Teller (BET). The particle size can be collected from a statistical distribution of 

multiple SEM images at different locations (sample size = 100) for the sulfur/graphene 

nanocomposite cathode. The microscopy can be performed on a field emission scanning 

electron microscope (Zeiss Ultraplus field emission SEM) that is equipped with energy-

dispersive X-ray spectroscopy (Oxford Instruments). Pre-/post-mortem SEM analysis can 

be done at different cycles to provide a temporal view of the morphological changes in the 

particle and mesostructural changes of the electrode. Sulfur-based conversion reactions 

coupled with dissolution effects can drastically change over time.  

In addition, porosity, pore size distributions, and pore volume measurements can 

be evaluated from mercury intrusion porosimetry (MIP). In a typical procedure, the 

mercury penetrometer is filled with electrode materials with passivated current collectors 

(prevent amalgamation effects) and sealed. The porosimeter utilizes a pressure vessel to 

incrementally step the pressure such that mercury can fill the pore spaces of the porous 

electrode. The Washburn Equation can be used to relate the incremental pressure to extract 

a pore size distribution. The surface area can be extracted from the nitrogen (N2) adsorption 
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Brunauer Emmett Teller (BET) method. Applied principles of gas adsorption can be 

applied on pre-/post-cycled electrodes to determine the dynamics of surface area due to 

sulfur-conversion. In a typical procedure, the sample is immersed into a bath of liquid 

nitrogen followed by injection of nitrogen gas at a given partial pressure. The relationship 

between the amount of gas required to reach a designated partial pressure is related to the 

amount of monolayer adsorption of gases to the substrate. In other words, more surface 

area translates to more gas required to reach the designated partial pressure.  

The electrochemical performance of a Li/S cell (formula: 50wt%-Sulfur, 40wt%-

Carbon, 10wt%-PVDF) based on 1M LiTFSI in DOL/DME is presented in Figure 8.4. The 

high carbon content is designed to alleviate the low electronic conductivity (5 x 10-14 S m-

1) and provide additional surface area/void space for the precipitation of lithium 

polysulfides. Since conductive carbon hardly stores charge at this voltage window (1V – 

3V), the majority of the charge/discharge capacity performance is attributed to sulfur itself 

and nears the theoretical capacity. However, the coulombic efficiency which reflects the 

amount of charge extracted vs. the amount of charge applied is relatively low (80% to 

90%). The low coulombic efficiency indicates partial loss of active material during the 

charge/discharge process.  

In general, Li-S batteries are widely touted as the next-generation Li-based 

chemistry. Researchers that can carve up a piece of this topic either in modeling (e.g. P2D, 

3D-mesoscale, machine learning) or in advanced material design for ultra-stable 

performance (i.e. capacity retention, coulombic efficiency, energy density) can reap the 

benefit for years to come. 
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Figure 8.4. | Next-generation conversion electrodes based on energy-dense Li-Sulfur 

technologies where (a) is the cycle performance plot, and (b) shows the charge-discharge 

profile 
 

8.3 IMPLEMENTING AN ION-EXCHANGE TRAPPING AGENT TO STOP THE 

POLYSULFIDE DEGRADATION PROCESS 

As discussed above, several challenges hinder the practical deployment of Li-S 

based batteries.218 Below are the main detrimental factors of ‘sulfur cathodes’:  
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(1) Polysulfide shuttle effect – The higher-order lithium polysulfide species readily 

dissolve into the electrolyte, resulting in a continual active material loss to the 

electrolyte.  During this process, the solubilized polysulfides can transport from 

the cathode through the electrolyte to the anode and then partially undergo a 

return trip. During the transport process, the solubilized polysulfides that 

interact with the Li anode can become reduced to shorter chain Li2S2 or Li2S. 

The precipitation of Li2S2 or Li2S on the anode is trapped and results in severe 

active material loss. On a cell-level, the polysulfide shuttle effect results in poor 

coulombic efficiency and rapid performance loss.  

(2) Poor utilization of Sulfur – The low electronic conductivity of cyclo-S8 (~ 5 x 

10-14 S m-1) results in poor utilization of the active material. This effect is 

exacerbated during the precipitation event of Li2S4 to Li2S2 and Li2S as well. 

The deposition increases the impedance and results in poor reaction kinetics, 

high polarization, poor sulfur utilization, and low-rate performance.  

(3) Catastrophic change in the cathode structure – The repetitive 

dissolution/precipitation event during discharge/charge results in severe 

mesostructural changes. First, the density of cyclo-S8 vs. the end-form Li2S is 

very different (2.03 vs. 1.66 g cm-3),218 resulting in hydrostatic stress from the 

volumetric expansion/contraction. The precipitation event is not well-

controlled in these systems and results in a very transient and unstable cathode 

structure. 

One method to circumvent the degradative processes of sulfur is to control the 

effects of the polysulfide shuttle. Pham et al.219 utilized a cationic polymer, poly[2,2’ - 
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(2,2’’,4,4’’’,6,6’’-hexamethyl-p-terphenyl-3,3’’-diyl)-5,5’ -bibenzimidazolium iodide] 

(HMT-PMBI(I)), to preferentially increase the residence of polysulfides at the cathode. 

The HMT-PMBI(I) serves as a binder and the active benzimidazolium cation couples with 

polysulfides, which prevents polysulfides from escaping the cathode. The HMT-PMBI(I) 

binder enabled >440 cycles at a loading of 3-4 mg cm-2 with an electrolyte/sulfur (E/S) 

ratio of 6 L mgs
-1. 

  A similar principle can be applied with ionomers based on highly tunable 

poly(norbornene) tetrablock copolymers in the form of homopolymers, block copolymers, 

or random copolymers with high ion-exchange capacities (Figure 8.5). Various cross-

linking of the polymer can be tested to explore the effects of the electrolyte uptake vs 

mechanical properties, effects on polysulfide shuttle, and impacts on reaction kinetics. The 

poly(norbornene) polymer at various cross-linkings was tested as a potential candidate for 

regulating the polysulfide shuttle effect. The sulfur electrode formula was based on 50wt%-

Sulfur, 38wt%-Carbon, 2wt% active ionomer, and10wt%-PVDF. At small quantities of 

ionomer, the gravimetric capacity of sulfur is relatively low (~700-900 mAh g-1), but shows 

characteristics of typical sulfur charge-discharge profiles. By comparison, the S8 → Li2S8 

reactions for both GT-32 and GT-72 are well-defined but GT-72 displays a narrower gap 

between subsequent cycles, whereas GT-32 has a sparser distribution for the first plateau 

(i.e. potential direction). The transition from Li2S8 to Li2S6 shows negligible change but 

GT-72 does spread more in the gravimetric capacity direction. The conversion from Li2S4 

to Li2S2 primary region is captured in Figure 8.6(a,b) by an extended reaction plateau at 

~2.15V.  
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Figure 8.5. | Homopolymer based on (a) block, (b) random, (c) casting membranes. 

Reproduced with permission from The Royal Society of Chemistry.220 
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The typical profile for (Li2S2 to Li2S) is realized towards the end of discharge. The 

most likely cause for the relatively moderate capacity and well-defined plateaus/peaks is 

due to the combination of LiTFSI and LiNO3 which can limit the solubility of S8 and the 

1.8V cutoff voltage. Also, the coulombic efficiency ranges between >98 % - which means 

the irreversible losses associated with S-reaction with Li-metal at the anode is inhibited. 

The preliminary results confirm active polymers as a potential candidate to mitigate the 

degradation processes of Li-S batteries. It is recommended that tuning the ion exchange 

capacity and/or the amount of ionomer can help in boosting the performance, cyclability, 

and columbic efficiency of Li-S batteries.  

 

Figure 8.6. | Charge-discharge curves for (a) GT32 and (b) GT72 

8.4 OPERANDO TECHNIQUES FOR STUDYING THE CORROSION OF LI
0
 

ELECTRODEPOSITS IN LI/S BATTERIES 

As discussed above in Section 4.1, several challenges hinder the practical 

deployment of Li-S based batteries.218 Below are the main detrimental factors of ‘Li-

metal’:  
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(1) Poor coulombic efficiency – Lithium metal as an anode is well-known to undergo 

severe irreversible losses due to the corrosion of high surface area Li0 

electrodeposits during post-charging processes (i.e. storage). Electron loss from the 

Li-metal facilitates the reduction of the electrolyte to form additional passivation at 

the Li-metal/electrolyte interface. The increase in SEI film thickness will cause 

resistance to build-up in the cell. Also, the Li-metal is known to form arborescent 

tree-like formations and drastic volumetric expansion that can fracture the 

passivating film, which leads to continual electrolyte consumption at the exposed 

reactive sites.  The loss in active material during charge/discharge results in poor 

coulombic efficiency.  

(2) Safety issues - Lithium dendrites are a well-known safety hazard as previously 

discussed in the early chapters of this thesis. The dendrites can result in internal 

short circuits that lead to rapid discharge and generation of significant heat, 

resulting in thermal runaway.  

(3) Low lithium utilization – After repetitive charge/discharge, the Li0 electrodeposits 

can break off from the bulk electrode and become electronically insulated. The loss 

in contact results in loss of active material. 

(4) Severe polarization – The anisotropic deposition/dissolution of Li-metal (porosity, 

different locations/structures) leads to regions with longer diffusion pathways. 

Also, the SEI continual build-up after each cycle leads to increased resistance. 

Extreme operating conditions (i.e. fluctuating temperatures, current, and depth-of-

discharge) and alterations in the battery chemistry (i.e. additives, fluorination, 

electrolyte, anodes, cathodes) can result in highly unpredictable degradation 
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processes (i.e. capacity loss, rapid cell death, and thermal runaway). It is important 

to understand the effects of temperature on the growth of Li metal and interaction 

with polysulfides in Li-S batteries. During a previous project, my research group 

discovered that a graphite/NMC532 (LiC6/LiNi0.5Mn0.3Co0.2O2) cell, which was 

cycled at low temperatures (-29 ⁰C) then brought back to room temperature, 

experienced two disastrous events: one cell vented gases after cycling at room 

temperature and the other one went into a thermal runaway after room temperature 

storage (at open circuit voltage).  

During post-mortem analysis, a high spatial dependency of degradation processes 

on both the cathode and anode for a large Li-ion cell was discovered. Extreme conditions 

was found to exacerbate highly stressed regions (e.g. region of high curvature, edges) and 

discovered a unique ripple-type current distribution for large format jellyroll-type 

electrodes. The ripple-type gradients were realized by enhanced optically filtered imaging 

of post-mortem electrodes that were salvaged from compromised cells. Multiple-location 

liquid N2 Raman Spectroscopy confirmed a preferential Li0 residence at ripple-peaks and 

absent at ripple-troughs. The root cause derives from severe electrochemical polarization 

and thermal gradients generated during charge/discharge, which caused drastic electrode 

warping and non-uniform Li+ flux from complex current gradients. Toward the edge of the 

electrode, alternating positive-then-negative striation lines were observed, which 

correspond to alternating high-then-low Li0 electrodeposition. Stress-buildup at specific 

electrode regions can lead to highly vulnerable sites where an internal short circuit can 

occur.  
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Li0 plating is a known hazard that can trigger catastrophic thermal runaway and 

result in continuous propagation to neighboring cells.221 Li0 plating occurs on a nucleation 

site (most notably a Li0 seed or other mixable materials that can be determined by Pourbaix 

Diagrams) and crystallizes in various formations depending on the material and operating 

condition. In rare cases, uniform single layer electrodeposition can occur, but other higher-

order growth patterns can form. This phenomenon depends on many factors including the 

uniformity of the electrodeposition surface (i.e. anisotropy/isotropy of facet orientation, 

peaks, and valleys, etc.) and whether the system is diffusion-limited. When the distribution 

of nucleation seeds is not uniform, display high anisotropy in facet orientation, and is 

diffusion-limited, the Li0 electrodeposition process favors arborescent tree-like formations 

known as Li0 dendrites.135 Dendrites have a high surface area and display high reactivity, 

which increases the number of reaction-zones where electrolyte reduction can occur. 

Electrolyte reduction (e.g. decomposition of ethylene carbonate, ethyl methyl carbonate, 

dimethyl carbonate, lithium hexafluorophosphate) can result in severe gas evolution and 

formation of a partially soluble and partially insoluble film on the surface of the active 

material. The film, also known as the solid-electrolyte interphase (SEI) acts as a barrier 

that increases the internal resistance of the cell by slowing down the mass transfer of Li+ 

ions that facilitate the redox reaction. SEI formation accelerates performance loss in Li-ion 

batteries and gassing significantly decreases the safety of the battery. Gasses such as CO, 

H2, O2, C2H4, C2H6, POF3, and entrained-HF123 can be released by a minor breach in the 

casing (either through compromised vents or punctures). The majority of the gasses 

released are flammable or toxic which pose safety concerns and exacerbate thermal 

runaway events.  
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For experimental work, it would be beneficial to the scientific community if further 

investigation of the degradative processes in Li-S batteries is done. Questions such as, what 

is the temperature-dependence of Li0 electrodeposition growth and interaction with 

polysulfides? What is the surface area and temperature trend for Li0 electrodeposits? How 

do polysulfides impact the surface area, resistance build-up, and porosity? What happens 

to Li0 under no reductive current and storage? What is the corrosion rate? What gasses are 

evolved from high surface area Li0 during storage? Do the gases facilitate other reactions? 

In answering these questions, the potential adoption of Li-S technology into various 

applications can be evaluated. 
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